이화여자대학교
사이트맵
이화여자대학교
기후물리실험실
About Us
인사말
찾아오는 길
Research
Publications
국제학술지
국내학술지
Members
교수
박사후 연구원
학생
방문학생
전 구성원
Board
사진
공지사항
모바일메뉴 열기
이화여자대학교
기후물리실험실
About Us
인사말
찾아오는 길
Research
Publications
국제학술지
국내학술지
Members
교수
박사후 연구원
학생
방문학생
전 구성원
Board
사진
공지사항
이화여자대학교
모바일메뉴 닫기
SITEMAP
Publications
홈
Publications
About Us
Research
Publications
Members
Board
국제학술지
국제학술지
국내학술지
국제학술지
공지
(2025. 10. 28.)
현재까지 출판된 논문 목록입니다. 아직 준비 중인 논문은 포함하지 않은 점 참고 바랍니다.
게시글 검색
검색분류선택
전체
전체
제목
내용
작성자
검색어
검색
Influence of cloud phase composition on climate feedbacks
The ratio of liquid water to ice in a cloud, largely controlled by the presence of ice nuclei and cloud temperature, alters cloud radiative effects. This study quantitatively examines how the liquid fraction of clouds influences various climate feedbacks using the NCAR Community Atmosphere Model (CAM). Climate feedback parameters were calculated using equilibrated temperature changes in response to increases in the atmospheric concentration of carbon dioxide in CAM Version 3.0 with a slab ocean model. Two sets of model experiments are designed such that cloud liquid fraction linearly decreases with a decrease in temperature down to −20°C (Experiment “C20”) and −40°C (Experiment “C40”). Thus, at the same subzero temperature, C20 yields fewer liquid droplets (and more ice crystals) than C40. Comparison of the results of experiments C20 and C40 reveals that experiment C20 is characterized by stronger cloud and temperature feedbacks in the tropics (30°N–30°S) (by 0.25 and −0.28 W m−2 K−1, respectively) but weaker cloud, temperature, and albedo feedbacks (by −0.20, 0.11, and −0.07 W m−2 K−1) in the extratropics. Compensation of these climate feedback changes leads to a net climate feedback change of ~7.28% of that of C40 in the model. These results suggest that adjustment of the cloud phase function affects all types of feedbacks (with the smallest effect on water vapor feedback). Although the net change in total climate feedback is small due to the cancellation of positive and negative individual feedback changes, some of the individual changes are relatively large. This illustrates the importance of the influence of cloud phase partitioning for all major climate feedbacks, and by extension, for future climate change predictions.
작성자
Choi et al.
작성일
2024.08.28
조회수
67
2014
Growing threat of intense tropical cyclones to East Asia during the period 1977–2010
The threat of intense tropical cyclones (TCs) to East Asia has increased in recent decades. Integrated analyses of five available TC data sets for the period 1977–2010 revealed that the growing threat of TCs primarily results from the significant shift that the spatial positions of the maximum intensity of TCs moved closer to East Asian coastlines from Vietnam to Japan. This shift incurs a robust increase in landfall intensity over east China, Korea and Japan. In contrast, an increase of TC genesis frequency over the northern part of the South China Sea leads to a reduction in the maximum TC intensity before landfall, because of their short lifetime; thus, there are no clear tendencies in the landfall intensity across Vietnam, south China and Taiwan. All changes are related to the strengthening of the Pacific Walker circulation, closely linked with the recent manifestation that the warming trend of sea surface temperature in the tropical western Pacific is much higher than that in the central to eastern Pacific.
작성자
Park et al.
작성일
2024.08.28
조회수
57
2014
Effects of double cropping on summer climate of the North China Plain and neighbouring regions
The North China Plain (NCP) is one of the most important agricultural regions in Asia and produces up to 50% of the cereal consumed in China each year. To meet increasing food demands without expanding croplands, annual agricultural practice in much of the NCP has changed from single to double cropping. The impact of double cropping on the regional climate, through biophysical feedbacks caused by changes in land surface conditions, remains largely unknown. Here we show that observed surface air temperatures during the inter-cropping season (June and July) are 0.40 °C higher over double cropping regions (DCRs) than over single cropping regions (SCRs), with increases in the daily maximum temperature as large as 1.02 °C. Using regional climate modelling, we attribute the higher temperatures in DCRs to reduced evapotranspiration during the inter-cropping period. The higher surface temperatures in June and July affect low-level circulation and, in turn, rainfall associated with the East Asian monsoon over the NCP and neighbouring countries. These findings suggest that double cropping in the NCP can amplify the magnitude of summertime climate changes over East Asia.
작성자
Jeong et al.
작성일
2024.08.28
조회수
76
2014
Connecting early summer cloud-controlled sunlight and late summer sea ice in the Arctic
This study demonstrates that absorbed solar radiation (ASR) at the top of the atmosphere in early summer (May–July) plays a precursory role in determining the Arctic sea ice concentration (SIC) in late summer (August–October). The monthly ASR anomalies are obtained over the Arctic Ocean (65°N–90°N) from the Clouds and the Earth's Radiant Energy System during 2000–2013. The ASR changes primarily with cloud variation. We found that the ASR anomaly in early summer is significantly correlated with the SIC anomaly in late summer (correlation coefficient, r ≈ −0.8 with a lag of 1 to 4 months). The region exhibiting high (low) ASR anomalies and low (high) SIC anomalies varies yearly. The possible reason is that the solar heat input to ice is most effectively affected by the cloud shielding effect under the maximum TOA solar radiation in June and amplified by the ice-albedo feedback. This intimate delayed ASR-SIC relationship is not represented in most of current climate models. Rather, the models tend to over-emphasize internal sea ice processes in summer.
작성자
Choi et al.
작성일
2024.08.28
조회수
69
2014
A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia
Through an agglomerative hierarchical clustering method, cold surges over East Asia are classified into two distinct types based on the spatial pattern of the geopotential height anomalies at 300 hPa. One is the wave-train type that is associated with developing large-scale waves across the Eurasian continent. The other is the blocking type whose occurrence accompanies subarctic blocking. During the wave-train cold surge, growing baroclinic waves induce a southeastward expansion of the Siberian High and strong northerly winds over East Asia. Blocking cold surge, on the other hand, is associated with a southward expansion of the Siberian High and northeasterly winds inherent to a height dipole consisting of the subarctic blocking and the East Asian coastal trough. The blocking cold surge tends to be more intense and last longer compared to the wave-train type. The wave-train cold surge is associated with the formation of a negative upper tropospheric height anomaly southeast of Greenland approximately 12 days before the surge occurrence. Further analysis of isentropic potential vorticity reveals that this height anomaly could originate from the lower stratosphere over the North Atlantic. Cold surge of the blocking type occurs with an amplifying positive geopotential and a negative potential vorticity anomaly over the Arctic and the northern Eurasia in stratosphere. These anomalies resemble the stratospheric signature of a negative phase of the Arctic Oscillation. This stratospheric feature is further demonstrated by the observation that the blocking type cold surge occurs more often when the Arctic Oscillation is in its negative phase.
작성자
Park et al.
작성일
2024.08.28
조회수
76
2014
Non-linear response of vegetation to coherent warming over northern high latitudes
Abstract: This study evaluates the large-scale changes in vegetation greenness at northern high latitudes (>60° N) using satellite-measured normalized difference vegetation index (NDVI) and station-merged temperature, precipitation and soil moisture for the period 1982–2008. During this 27-year period, although coherent warming trends were observed at most of the high latitudes, changes in the NDVI showed apparent spatial and temporal heterogeneity. In particular, changes in the hemispheric mean NDVI increased until 1997, but decreased thereafter. Maximum covariance analysis, which is a statistical method to detect large-scale covariability between two variables over time, reveals significant relationships between NDVI and soil moisture (and/or precipitation) in the regions of negative NDVI trends. These results further suggest that local moisture availability also plays a considerable role in the large-scale changes in vegetation as well as coherent warming over the northern high latitudes. --- Published online 16 July 2012
작성자
Jeong et al.
작성일
2024.09.04
조회수
55
2013
Potential impacts of northeastern Eurasian snow cover on generation of dust storms in northwestern China during spring
Abstract: The effects of the northeastern Eurasian snow cover on the frequency of spring dust storms in northwestern China have been examined for the period 1979–2007. Averaged over all 43 stations in northwestern China, a statistically significant relationship has been found between dust-storm frequency (DSF) and Eurasian snow-water equivalent (SWE) during spring: mean DSF of 7.4 and 3.3 days for years of high- and low SWE, respectively. Further analyses reveal that positive SWE anomalies enhance the meridional gradients of the lower tropospheric temperatures and geopotential heights, thereby strengthening westerly jets and zonal wind shear over northwestern China and western Inner Mongolia of China, the regions of major dust sources. The anomalous atmospheric circulation corresponding to the Eurasian SWE anomalies either reinforces or weakens atmospheric baroclinicity and cyclogenesis, according to the sign of the anomaly, to affect the spring DSF. This study suggests that Eurasian SWE anomalies can be an influential factor of spring DSF in northwestern China and western Inner Mongolia of China. --- Published online 22 September 2012
작성자
Lee et al.
작성일
2024.09.04
조회수
52
2013
Technical note on a track-pattern-based model for predicting seasonal tropical cyclone activity over the western...
Recently, the National Typhoon Center (NTC) at the Korea Meteorological Administration launched a track-pattern-based model that predicts the horizontal distribution of tropical cyclone (TC) track density from June to October. This model is the first approach to target seasonal TC track clusters covering the entire western North Pacific (WNP) basin, and may represent a milestone for seasonal TC forecasting, using a simple statistical method that can be applied at weather operation centers. In this note, we describe the procedure of the track-pattern-based model with brief technical background to provide practical information on the use and operation of the model. The model comprises three major steps. First, long-term data of WNP TC tracks reveal seven climatological track clusters. Second, the TC counts for each cluster are predicted using a hybrid statistical-dynamical method, using the seasonal prediction of large-scale environments. Third, the final forecast map of track density is constructed by merging the spatial probabilities of the seven clusters and applying necessary bias corrections. Although the model is developed to issue the seasonal forecast in mid-May, it can be applied to alternative dates and target seasons following the procedure described in this note. Work continues on establishing an automatic system for this model at the NTC.
작성자
Ho et al.
작성일
2024.08.28
조회수
59
2013
Spatially inhomogeneous trends of tropical cyclone intensity over the western North Pacific for 1977-2010
The spatial distribution of trends in tropical cyclone (TC) intensity over the western North Pacific Ocean (WNP) during the period 1977–2010 was examined using five TC datasets. The spatial distribution of the TC intensity was expressed by seasonally averaged maximum wind speeds in 5° × 5° horizontal grids. The trends showed a spatial inhomogeneity, with a weakening in the tropical Philippine Sea (TP) and a strengthening in southern Japan and its southeastern ocean (SJ). This distribution could be described by TC intensification rate and genesis frequency, with the aid of the climatological direction of TC movement. The increasing intensification rate around the center of the WNP could mostly account for the increasing intensity over the SJ region, while the influence of both intensification rate and local genesis frequency mattered in the TP region because of the effect of the newly generated and less-developed weak TCs on the TC intensity. Thermodynamic variables (e.g., sea surface temperature, potential intensity, and 26°C isotherm depth) showed almost homogeneous changes in space, possibly favoring intensification rate and genesis frequency over the entire WNP. However, the decreasing intensification rate and genesis frequency in some tropical regions conflicted with the impact of thermodynamic variables; rather, they were in accord with the impact of dynamic variables (i.e., vorticity and wind shear). In conclusion, the spatially inhomogeneous trends in TC intensity could be explained by considering the thermodynamic and dynamic aspects in combination through intensification rate and genesis frequency.
작성자
Park et al.
작성일
2024.08.28
조회수
68
2013
Satellite data-based phenological evaluation of the nationwide reforestation of South Korea
Through the past 60 years, forests, now of various age classes, have been established in the southern part of the Korean Peninsula through nationwide efforts to reestablish forests since the Korean War (1950–53), during which more than 65% of the nation's forest was destroyed. Careful evaluation of long-term changes in vegetation growth after reforestation is one of the essential steps to ensuring sustainable forest management. This study investigated nationwide variations in vegetation phenology using satellite-based growing season estimates for 1982–2008. The start of the growing season calculated from the normalized difference vegetation index (NDVI) agrees reasonably with the ground-observed first flowering date both temporally (correlation coefficient, r = 0.54) and spatially (r = 0.64) at the 95% confidence level. Over the entire 27-year period, South Korea, on average, experienced a lengthening of the growing season of 4.5 days decade−1, perhaps due to recent global warming. The lengthening of the growing season is attributed mostly to delays in the end of the growing season. The retrieved nationwide growing season data were used to compare the spatial variations in forest biomass carbon density with the time-averaged growing season length for 61 forests. Relatively higher forest biomass carbon density was observed over the regions having a longer growing season, especially for the regions dominated by young (<30 year) forests. These results imply that a lengthening of the growing season related to the ongoing global warming may have positive impacts on carbon sequestration, an important aspect of large-scale forest management for sustainable development.
작성자
Jeong et al.
작성일
2024.08.28
조회수
84
2013
Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period October...
This study examines the extraordinarily long-lasting episode of high concentrations of particulate matter with diameter <10 μm (PM10) in Seoul, Korea over the period October 16–20, 2008. The concentration of PM10 increased up to 197.2 μg m−3 and continually stayed above the daily environmental control standard value (100 μg m−3) for the period. Satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) showed pronounced transport of aerosols from China to the Korean peninsula prior to the high-PM10 episode. The updraft of air pollutants from the source region in China, transport by westerlies, and subsequent descent to Seoul metropolitan regions are examined in the context of horizontal and vertical airflows. The connection between PM10 concentration over the Chinese source region and the Seoul target area is verified by wind back trajectory analysis. The meteorological conditions favorable for maintenance of the high PM10 levels are investigated through the analysis of weather maps and low-level stability. In this high-PM10 episode, the stagnant high-pressure system over Korea may play a decisive role in the descent and accumulation of air pollutants. The influence of transboundary air pollutants from China on the air quality in Korea and relevant meteorological environment found in the present study will provide a theoretical underpinning to potential cooperation between East Asian countries in monitoring and controlling atmospheric conditions.
작성자
Lee et al.
작성일
2024.08.28
조회수
69
2013
Estimation of aerosol direct radiative effects for all-sky conditions from CERES and MODIS observations
Satellite observations have shown the global average of the aerosol direct radiative effect (DRE) at the top of the atmosphere to be approximately −5.0 W m−2. Although there is a general consensus on this quantity, it is essentially biased toward clear-sky conditions. To circumvent this limitation, the present study introduces a new method for retrieving the global DRE of aerosol over the region of 60°S–60°N for all-sky conditions (both clear and cloudy skies). The all-sky DRE was calculated on a monthly basis by combining the measured DRE for a clear sky and the simulated DRE for a cloudy sky in 1°×1° grids. For the measured clear-sky DRE, we employed aerosol, cloud, and radiation fluxes from the Cloud and Earth's Radiant Energy System (CERES) instrument and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite for May 2000–December 2005. For the simulated cloudy-sky DRE, we performed radiative transfer modeling with the MODIS cloud properties in addition to the aerosol optical properties independently estimated in this study that include asymmetry factor and single scattering albedo. The results show that the global mean±standard deviation of DRE for the all-sky scene is −3.1±1.0 W m−2, which is weaker than that for the clear-sky only. This is in good agreement with the global estimates from previous studies based on different methods. The main advantage of our method is near-real-time estimation of monthly global all-sky DRE that has physical consistency with the CERES data.
작성자
Oh et al.
작성일
2024.08.28
조회수
140
2013
Critical role of northern off-equatorial sea surface temperature forcing associated with central Pacific El Niño in...
Observational records reveal that the number of tropical cyclones (TCs) approaching East Asia in July–October is positively correlated with sea surface temperatures (SSTs) in the equatorial and northern off-equatorial central Pacific (CP) oceans, indicating the significant impact of CP El Niño (CP-EN). Through experiments using a Weather Research and Forecast (WRF) model–based regional climate model, this study demonstrates that it is northern off-equatorial CP warming, rather than equatorial CP warming, that effectively induces local anomalous steering flows pertinent to the observed increase in TC activity over East Asia during CP-EN. Sensitivity experiments, in which the prescribed CP-EN-related SST anomaly is confined near the equator, do not capture the observed TC increase over East Asia, whereas those including the off-equatorial region successfully reproduce observed atmospheric and TC variabilities. The off-equatorial CP SST anomaly acts to expand the anomalous cyclonic response in the Philippine Sea farther northward. This produces a tunnel effect in the East China Sea, by which more TCs move to East Asian coastal regions (e.g., east China, Taiwan, Korea, and Japan).
작성자
Jin et al.
작성일
2024.08.28
조회수
64
2013
Comments on “Direct radiative forcing of anthropogenic aerosols over oceans from satellite observation
Previous observational studies have estimated anthropogenic aerosol direct radiative forcing over oceans without due consideration of cloudy-sky aerosols. However, when interaction between clouds and aerosols located below or above the cloud level is taken into account, the aerosol direct radiative forcing is larger by as much as 5 W m−2 in most mid-latitude regions in the Northern Hemisphere.
작성자
Oh et al.
작성일
2024.08.28
조회수
67
2013
Changes in the linear relationship of ENSO-PDO under the global warming
We examine changes in El Niño and Southern Oscillation (ENSO)/Pacific Decadal Oscillation (PDO) relationship under the global warming using coupled climate models participated in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The temporal structure for the ENSO–PDO relationship is changed remarkably. The relationship between ENSO and PDO during the boreal winter (December, January and February) becomes stronger so that there would be more frequent in phase occurrence of ENSO and PDO (i.e. El Niño—a positive phase of PDO or La Niña—a negative phase of PDO). As PDO could constructively interfere with the ENSO-related climate when ENSO and PDO are in phase, in the future one may expect stronger climate signal because of ENSO in the midlatitude. The IPCC AR4 model also shows that the Pacific North America-like pattern is slightly shifted eastward and much stronger. We also discuss the possible reason for these changes.
작성자
Kwon et al.
작성일
2024.08.28
조회수
91
2013
2010 western North Pacific typhoon season: Seasonal overview and forecast using track-pattern-based model
Abstract: Fourteen named tropical cyclones (TCs) formed in the western North Pacific (WNP) in 2010, representing the lowest count since 1951. Both low activity during the typhoon season (June–October) and quiescence during the pre- and posttyphoon seasons were major contributing factors. Despite overall low activity, TC activity along land boundaries was enhanced because the overall genesis locations of TCs shifted to the north and west and a majority of them affected the coastal countries in the WNP. These features are attributed to the expansion of the subtropical high and weakening of the monsoon trough associated with the rapid transition of the 2009/10 El Niño to the 2010/11 La Niña. The National Typhoon Center (NTC) in South Korea utilizes the recently developed track-pattern-based model of the hybrid statistical–dynamical type as the operational long-range TC forecast system. This model fairly forecast the anomalous spatial distribution of TC track density for the 2010 typhoon season. A higher-than-normal track density was successfully forecast near Korea and Japan. This is attributed to the overall skillful forecast of TC count for each pattern by the NTC model, though some deficiencies in forecasting extremes for some patterns are evident. The total seasonal genesis frequency integrated over the seven patterns is well below normal (about 16.4) close to the observations. The fair predictability in 2010 using the NTC model is attributed to the skillful forecast of the ENSO transition by the National Centers for Environmental Prediction’s Climate Forecast System, in addition to the validity of the NTC model itself.
작성자
Kim et al.
작성일
2024.09.04
조회수
50
2012
Assessment of the changes in extreme vulnerability over East Asia due to global warming
Abstract: A number of indices have been employed to describe weather extremes on the basis of climate regimes and public concerns. In this study, we combined these traditional indices into four groups according to whether they relate to warm (Twarm), cold (Tcold), wet (Pwet), or dry (Pdry) extremes. Analysis of the combined indices calculated for the daily temperatures and precipitation at 750 meteorological stations in Korea, China, and Japan for 1960s–2000s shows increasing trends in Twarm and Pdry events and decreasing trends in Tcold events in recent decades, particularly in the northern part of East Asia. A notable regional variation is an increase in the Pwet events in the Korean Peninsula. We applied the same analysis to a 200-year global climate model simulation for 1900–2099 using the National Center for Atmospheric Research-Community Climate System Model 3. During the 20th century, the changes in Twarm and Tcold calculated from the model data are largely consistent with those calculated from the observations, especially in northern East Asia. The model projections for the 21st century indicate statistically significant increasing Twarm and decreasing Tcold trends in extreme events over the region. Results obtained from historical archives and model simulations using our combined weather extreme indices suggest that northern East Asia will be subject to increased warm and dry extremes and the Korea Peninsula will experience more wet extremes.
작성자
Lee et al.
작성일
2024.09.04
조회수
70
2012
Evaluating observed and projected future climate changes for the Arctic using Köppen-Trewartha climate classification
Abstract: The ecosystems in the Arctic region are known to be very sensitive to climate changes. The accelerated warming for the past several decades has profoundly influenced the lives of the native populations and ecosystems in the Arctic. Given that the Köppen-Trewartha (K-T) climate classification is based on reliable variations of land-surface types (especially vegetation), this study used the K-T scheme to evaluate climate changes and their impact on vegetation for the Arctic (north of 50°N) by analyzing observations as well as model simulations for the period 1900–2099. The models include 16 fully coupled global climate models from the Intergovernmental Panel on Climate Change Fourth Assessment. By the end of this century, the annual-mean surface temperature averaged over Arctic land regions is projected to increase by 3.1, 4.6 and 5.3°C under the Special Report on Emissions Scenario (SRES) B1, A1b, and A2 emission scenarios, respectively. Increasing temperature favors a northward expansion of temperate climate (i.e., Dc and Do in the K-T classification) and boreal oceanic climate (i.e., Eo) types into areas previously covered by boreal continental climate (i.e., Ec) and tundra; and tundra into areas occupied by permanent ice. The tundra region is projected to shrink by −1.86 × 106 km2 (−33.0%) in B1, −2.4 × 106 km2 (−42.6%) in A1b, and −2.5 × 106 km2 (−44.2%) in A2 scenarios by the end of this century. The Ec climate type retreats at least 5° poleward of its present location, resulting in −18.9, −30.2, and −37.1% declines in areal coverage under the B1, A1b and A2 scenarios, respectively. The temperate climate types (Dc and Do) advance and take over the area previously covered by Ec. The area covered by Dc climate expands by 4.61 × 106 km2 (84.6%) in B1, 6.88 × 106 km2 (126.4%) in A1b, and 8.16 × 106 km2 (149.6%) in A2 scenarios. The projected redistributions of K-T climate types also differ regionally. In northern Europe and Alaska, the warming may cause more rapid expansion of temperate climate types. Overall, the climate types in 25, 39.1, and 45% of the entire Arctic region are projected to change by the end of this century under the B1, A1b, and A2 scenarios, respectively. Because the K-T climate classification was constructed on the basis of vegetation types, and each K-T climate type is closely associated with certain prevalent vegetation species, the projected large shift in climate types suggests extensive broad-scale redistribution of prevalent ecoregions in the Arctic. Full title: Evaluating observed and projected future climate changes for the Arctic using the Köppen-Trewartha climate classification
작성자
Feng et al.
작성일
2024.09.04
조회수
65
2012
Greening in the circumpolar high-latitude may amplify warming in the growing season
Abstract: We present a study that suggests greening in the circumpolar high-latitude regions amplifies surface warming in the growing season (May–September) under enhanced greenhouse conditions. The investigation used a series of climate simulations with the Community Atmospheric Model version 3—which incorporates a coupled, dynamic global vegetation model—with and without vegetation feedback, under both present and doubled CO2 concentrations. Results indicate that climate warming and associated changes promote circumpolar greening with northward expansion and enhanced greenness of both the Arctic tundra and boreal forest regions. This leads to additional surface warming in the high-latitudes in the growing season, primarily through more absorption of incoming solar radiation. The resulting surface and tropospheric warming in the high-latitude and Arctic regions weakens prevailing tropospheric westerlies over 45–70N, leading to the formation of anticyclonic pressure anomalies in the Arctic regions. These pressure anomalies resemble the anomalous circulation pattern during the negative phase of winter Arctic Oscillation. It is suggested that these circulation anomalies reinforce the high-latitude and Arctic warming in the growing season. --- Published online: 26 July 2011
작성자
Jeong et al.
작성일
2024.09.04
조회수
54
2012
Low-frequency variability of TC-induced heavy rainfall over East Asia associated with tropical and North Pacific SSTs
Abstract: This study investigates the relationship between tropical cyclone (TC)–induced heavy rainfall over East Asia (EA) and large-scale climate variability during June–October for the period of 1961–2005. An empirical orthogonal function analysis is applied to the seasonal-total TC-induced heavy rainfall obtained in meteorological stations over EA. The first leading mode shows a dipole pattern between South China (SC) and Northeast Asia (NEA; i.e., Southeast-East China, Taiwan, and Japan). This dipole pattern is found to be associated with the two modes of sea surface temperature (SST) variations over the Pacific: one in the tropical Pacific, and the other spanning from EA to the North Pacific Ocean. The former is located in the NINO4 region, while the latter is characterized by the North Pacific center of the Pacific Decadal Oscillation (PDO). The dipole mode is generally well explained by the combined NINO4 and PDO impacts on TC tracks. During positive NINO4, cyclonic steering flows appear over inshore Southeast China, which increases recurving TCs. Meanwhile, the midlatitude North Pacific SST warming during negative PDO is overlaid by the barotropic anticyclone. The anomalous steering easterlies along 20°–40°N related to the anticyclone increase TC occurrence toward Southeast-East China and Taiwan. Furthermore, the precipitable water greatly increases in the midlatitude ocean during negative PDO years, which may help to enhance the rainfall amount while TCs approach Japan. To sum up, in a climatological sense, the first mode of TC-induced heavy rainfall over EA can be interpreted by the combined variations of negative (positive) PDO with positive (negative) NINO4. Full title: Low-frequency variability of tropical cyclone-induced heavy rainfall over East Asia associated with tropical and North Pacific sea surface temperatures
작성자
Lee et al.
작성일
2024.09.04
조회수
52
2012
첫 페이지로 이동하기
이전 페이지로 이동하기
1
2
3
4
5
6
7
8
9
10
다음 페이지로 이동하기
마지막 페이지로 이동하기