이화여자대학교
사이트맵
이화여자대학교
기후물리실험실
About Us
인사말
찾아오는 길
Research
Publications
국제학술지
국내학술지
Members
교수
박사후 연구원
학생
방문학생
전 구성원
Board
사진
공지사항
모바일메뉴 열기
이화여자대학교
기후물리실험실
About Us
인사말
찾아오는 길
Research
Publications
국제학술지
국내학술지
Members
교수
박사후 연구원
학생
방문학생
전 구성원
Board
사진
공지사항
이화여자대학교
모바일메뉴 닫기
SITEMAP
Publications
홈
Publications
About Us
Research
Publications
Members
Board
국제학술지
국제학술지
국내학술지
국제학술지
공지
(2025. 10. 28.)
현재까지 출판된 논문 목록입니다. 아직 준비 중인 논문은 포함하지 않은 점 참고 바랍니다.
게시글 검색
검색분류선택
전체
전체
제목
내용
작성자
검색어
검색
Influence of transboundary air pollutants from China on the high-PM10 episode in Seoul, Korea for the period October...
This study examines the extraordinarily long-lasting episode of high concentrations of particulate matter with diameter <10 μm (PM10) in Seoul, Korea over the period October 16–20, 2008. The concentration of PM10 increased up to 197.2 μg m−3 and continually stayed above the daily environmental control standard value (100 μg m−3) for the period. Satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) showed pronounced transport of aerosols from China to the Korean peninsula prior to the high-PM10 episode. The updraft of air pollutants from the source region in China, transport by westerlies, and subsequent descent to Seoul metropolitan regions are examined in the context of horizontal and vertical airflows. The connection between PM10 concentration over the Chinese source region and the Seoul target area is verified by wind back trajectory analysis. The meteorological conditions favorable for maintenance of the high PM10 levels are investigated through the analysis of weather maps and low-level stability. In this high-PM10 episode, the stagnant high-pressure system over Korea may play a decisive role in the descent and accumulation of air pollutants. The influence of transboundary air pollutants from China on the air quality in Korea and relevant meteorological environment found in the present study will provide a theoretical underpinning to potential cooperation between East Asian countries in monitoring and controlling atmospheric conditions.
작성자
Lee et al.
작성일
2024.08.28
조회수
72
2013
Estimation of aerosol direct radiative effects for all-sky conditions from CERES and MODIS observations
Satellite observations have shown the global average of the aerosol direct radiative effect (DRE) at the top of the atmosphere to be approximately −5.0 W m−2. Although there is a general consensus on this quantity, it is essentially biased toward clear-sky conditions. To circumvent this limitation, the present study introduces a new method for retrieving the global DRE of aerosol over the region of 60°S–60°N for all-sky conditions (both clear and cloudy skies). The all-sky DRE was calculated on a monthly basis by combining the measured DRE for a clear sky and the simulated DRE for a cloudy sky in 1°×1° grids. For the measured clear-sky DRE, we employed aerosol, cloud, and radiation fluxes from the Cloud and Earth's Radiant Energy System (CERES) instrument and the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite for May 2000–December 2005. For the simulated cloudy-sky DRE, we performed radiative transfer modeling with the MODIS cloud properties in addition to the aerosol optical properties independently estimated in this study that include asymmetry factor and single scattering albedo. The results show that the global mean±standard deviation of DRE for the all-sky scene is −3.1±1.0 W m−2, which is weaker than that for the clear-sky only. This is in good agreement with the global estimates from previous studies based on different methods. The main advantage of our method is near-real-time estimation of monthly global all-sky DRE that has physical consistency with the CERES data.
작성자
Oh et al.
작성일
2024.08.28
조회수
143
2013
Critical role of northern off-equatorial sea surface temperature forcing associated with central Pacific El Niño in...
Observational records reveal that the number of tropical cyclones (TCs) approaching East Asia in July–October is positively correlated with sea surface temperatures (SSTs) in the equatorial and northern off-equatorial central Pacific (CP) oceans, indicating the significant impact of CP El Niño (CP-EN). Through experiments using a Weather Research and Forecast (WRF) model–based regional climate model, this study demonstrates that it is northern off-equatorial CP warming, rather than equatorial CP warming, that effectively induces local anomalous steering flows pertinent to the observed increase in TC activity over East Asia during CP-EN. Sensitivity experiments, in which the prescribed CP-EN-related SST anomaly is confined near the equator, do not capture the observed TC increase over East Asia, whereas those including the off-equatorial region successfully reproduce observed atmospheric and TC variabilities. The off-equatorial CP SST anomaly acts to expand the anomalous cyclonic response in the Philippine Sea farther northward. This produces a tunnel effect in the East China Sea, by which more TCs move to East Asian coastal regions (e.g., east China, Taiwan, Korea, and Japan).
작성자
Jin et al.
작성일
2024.08.28
조회수
67
2013
Comments on “Direct radiative forcing of anthropogenic aerosols over oceans from satellite observation
Previous observational studies have estimated anthropogenic aerosol direct radiative forcing over oceans without due consideration of cloudy-sky aerosols. However, when interaction between clouds and aerosols located below or above the cloud level is taken into account, the aerosol direct radiative forcing is larger by as much as 5 W m−2 in most mid-latitude regions in the Northern Hemisphere.
작성자
Oh et al.
작성일
2024.08.28
조회수
70
2013
Changes in the linear relationship of ENSO-PDO under the global warming
We examine changes in El Niño and Southern Oscillation (ENSO)/Pacific Decadal Oscillation (PDO) relationship under the global warming using coupled climate models participated in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The temporal structure for the ENSO–PDO relationship is changed remarkably. The relationship between ENSO and PDO during the boreal winter (December, January and February) becomes stronger so that there would be more frequent in phase occurrence of ENSO and PDO (i.e. El Niño—a positive phase of PDO or La Niña—a negative phase of PDO). As PDO could constructively interfere with the ENSO-related climate when ENSO and PDO are in phase, in the future one may expect stronger climate signal because of ENSO in the midlatitude. The IPCC AR4 model also shows that the Pacific North America-like pattern is slightly shifted eastward and much stronger. We also discuss the possible reason for these changes.
작성자
Kwon et al.
작성일
2024.08.28
조회수
94
2013
2010 western North Pacific typhoon season: Seasonal overview and forecast using track-pattern-based model
Abstract: Fourteen named tropical cyclones (TCs) formed in the western North Pacific (WNP) in 2010, representing the lowest count since 1951. Both low activity during the typhoon season (June–October) and quiescence during the pre- and posttyphoon seasons were major contributing factors. Despite overall low activity, TC activity along land boundaries was enhanced because the overall genesis locations of TCs shifted to the north and west and a majority of them affected the coastal countries in the WNP. These features are attributed to the expansion of the subtropical high and weakening of the monsoon trough associated with the rapid transition of the 2009/10 El Niño to the 2010/11 La Niña. The National Typhoon Center (NTC) in South Korea utilizes the recently developed track-pattern-based model of the hybrid statistical–dynamical type as the operational long-range TC forecast system. This model fairly forecast the anomalous spatial distribution of TC track density for the 2010 typhoon season. A higher-than-normal track density was successfully forecast near Korea and Japan. This is attributed to the overall skillful forecast of TC count for each pattern by the NTC model, though some deficiencies in forecasting extremes for some patterns are evident. The total seasonal genesis frequency integrated over the seven patterns is well below normal (about 16.4) close to the observations. The fair predictability in 2010 using the NTC model is attributed to the skillful forecast of the ENSO transition by the National Centers for Environmental Prediction’s Climate Forecast System, in addition to the validity of the NTC model itself.
작성자
Kim et al.
작성일
2024.09.04
조회수
53
2012
Assessment of the changes in extreme vulnerability over East Asia due to global warming
Abstract: A number of indices have been employed to describe weather extremes on the basis of climate regimes and public concerns. In this study, we combined these traditional indices into four groups according to whether they relate to warm (Twarm), cold (Tcold), wet (Pwet), or dry (Pdry) extremes. Analysis of the combined indices calculated for the daily temperatures and precipitation at 750 meteorological stations in Korea, China, and Japan for 1960s–2000s shows increasing trends in Twarm and Pdry events and decreasing trends in Tcold events in recent decades, particularly in the northern part of East Asia. A notable regional variation is an increase in the Pwet events in the Korean Peninsula. We applied the same analysis to a 200-year global climate model simulation for 1900–2099 using the National Center for Atmospheric Research-Community Climate System Model 3. During the 20th century, the changes in Twarm and Tcold calculated from the model data are largely consistent with those calculated from the observations, especially in northern East Asia. The model projections for the 21st century indicate statistically significant increasing Twarm and decreasing Tcold trends in extreme events over the region. Results obtained from historical archives and model simulations using our combined weather extreme indices suggest that northern East Asia will be subject to increased warm and dry extremes and the Korea Peninsula will experience more wet extremes.
작성자
Lee et al.
작성일
2024.09.04
조회수
72
2012
Evaluating observed and projected future climate changes for the Arctic using Köppen-Trewartha climate classification
Abstract: The ecosystems in the Arctic region are known to be very sensitive to climate changes. The accelerated warming for the past several decades has profoundly influenced the lives of the native populations and ecosystems in the Arctic. Given that the Köppen-Trewartha (K-T) climate classification is based on reliable variations of land-surface types (especially vegetation), this study used the K-T scheme to evaluate climate changes and their impact on vegetation for the Arctic (north of 50°N) by analyzing observations as well as model simulations for the period 1900–2099. The models include 16 fully coupled global climate models from the Intergovernmental Panel on Climate Change Fourth Assessment. By the end of this century, the annual-mean surface temperature averaged over Arctic land regions is projected to increase by 3.1, 4.6 and 5.3°C under the Special Report on Emissions Scenario (SRES) B1, A1b, and A2 emission scenarios, respectively. Increasing temperature favors a northward expansion of temperate climate (i.e., Dc and Do in the K-T classification) and boreal oceanic climate (i.e., Eo) types into areas previously covered by boreal continental climate (i.e., Ec) and tundra; and tundra into areas occupied by permanent ice. The tundra region is projected to shrink by −1.86 × 106 km2 (−33.0%) in B1, −2.4 × 106 km2 (−42.6%) in A1b, and −2.5 × 106 km2 (−44.2%) in A2 scenarios by the end of this century. The Ec climate type retreats at least 5° poleward of its present location, resulting in −18.9, −30.2, and −37.1% declines in areal coverage under the B1, A1b and A2 scenarios, respectively. The temperate climate types (Dc and Do) advance and take over the area previously covered by Ec. The area covered by Dc climate expands by 4.61 × 106 km2 (84.6%) in B1, 6.88 × 106 km2 (126.4%) in A1b, and 8.16 × 106 km2 (149.6%) in A2 scenarios. The projected redistributions of K-T climate types also differ regionally. In northern Europe and Alaska, the warming may cause more rapid expansion of temperate climate types. Overall, the climate types in 25, 39.1, and 45% of the entire Arctic region are projected to change by the end of this century under the B1, A1b, and A2 scenarios, respectively. Because the K-T climate classification was constructed on the basis of vegetation types, and each K-T climate type is closely associated with certain prevalent vegetation species, the projected large shift in climate types suggests extensive broad-scale redistribution of prevalent ecoregions in the Arctic. Full title: Evaluating observed and projected future climate changes for the Arctic using the Köppen-Trewartha climate classification
작성자
Feng et al.
작성일
2024.09.04
조회수
67
2012
Greening in the circumpolar high-latitude may amplify warming in the growing season
Abstract: We present a study that suggests greening in the circumpolar high-latitude regions amplifies surface warming in the growing season (May–September) under enhanced greenhouse conditions. The investigation used a series of climate simulations with the Community Atmospheric Model version 3—which incorporates a coupled, dynamic global vegetation model—with and without vegetation feedback, under both present and doubled CO2 concentrations. Results indicate that climate warming and associated changes promote circumpolar greening with northward expansion and enhanced greenness of both the Arctic tundra and boreal forest regions. This leads to additional surface warming in the high-latitudes in the growing season, primarily through more absorption of incoming solar radiation. The resulting surface and tropospheric warming in the high-latitude and Arctic regions weakens prevailing tropospheric westerlies over 45–70N, leading to the formation of anticyclonic pressure anomalies in the Arctic regions. These pressure anomalies resemble the anomalous circulation pattern during the negative phase of winter Arctic Oscillation. It is suggested that these circulation anomalies reinforce the high-latitude and Arctic warming in the growing season. --- Published online: 26 July 2011
작성자
Jeong et al.
작성일
2024.09.04
조회수
55
2012
Low-frequency variability of TC-induced heavy rainfall over East Asia associated with tropical and North Pacific SSTs
Abstract: This study investigates the relationship between tropical cyclone (TC)–induced heavy rainfall over East Asia (EA) and large-scale climate variability during June–October for the period of 1961–2005. An empirical orthogonal function analysis is applied to the seasonal-total TC-induced heavy rainfall obtained in meteorological stations over EA. The first leading mode shows a dipole pattern between South China (SC) and Northeast Asia (NEA; i.e., Southeast-East China, Taiwan, and Japan). This dipole pattern is found to be associated with the two modes of sea surface temperature (SST) variations over the Pacific: one in the tropical Pacific, and the other spanning from EA to the North Pacific Ocean. The former is located in the NINO4 region, while the latter is characterized by the North Pacific center of the Pacific Decadal Oscillation (PDO). The dipole mode is generally well explained by the combined NINO4 and PDO impacts on TC tracks. During positive NINO4, cyclonic steering flows appear over inshore Southeast China, which increases recurving TCs. Meanwhile, the midlatitude North Pacific SST warming during negative PDO is overlaid by the barotropic anticyclone. The anomalous steering easterlies along 20°–40°N related to the anticyclone increase TC occurrence toward Southeast-East China and Taiwan. Furthermore, the precipitable water greatly increases in the midlatitude ocean during negative PDO years, which may help to enhance the rainfall amount while TCs approach Japan. To sum up, in a climatological sense, the first mode of TC-induced heavy rainfall over EA can be interpreted by the combined variations of negative (positive) PDO with positive (negative) NINO4. Full title: Low-frequency variability of tropical cyclone-induced heavy rainfall over East Asia associated with tropical and North Pacific sea surface temperatures
작성자
Lee et al.
작성일
2024.09.04
조회수
55
2012
Track-pattern-based model for seasonal prediction of tropical cyclone activity over the western North Pacific
Abstract: Skillful predictions of the seasonal tropical cyclone (TC) activity are important in mitigating the potential destruction from the TC approach/landfall in many coastal regions. In this study, a novel approach for the prediction of the seasonal TC activity over the western North Pacific is developed to provide useful probabilistic information on the seasonal characteristics of the TC tracks and vulnerable areas. The developed model, which is termed the “track-pattern-based model,” is characterized by two features: 1) a hybrid statistical–dynamical prediction of the seasonal activity of seven track patterns obtained by fuzzy c-means clustering of historical TC tracks and 2) a technique that enables researchers to construct a forecasting map of the spatial probability of the seasonal TC track density over the entire basin. The hybrid statistical–dynamical prediction for each pattern is based on the statistical relationship between the seasonal TC frequency of the pattern and the seasonal mean key predictors dynamically forecast by the National Centers for Environmental Prediction Climate Forecast System in May. The leave-one-out cross validation shows good prediction skill, with the correlation coefficients between the hindcasts and the observations ranging from 0.71 to 0.81. Using the predicted frequency and the climatological probability for each pattern, the authors obtain the forecasting map of the seasonal TC track density by combining the TC track densities of the seven patterns. The hindcasts of the basinwide seasonal TC track density exhibit good skill in reproducing the observed pattern. The El Niño–/La Niña–related years, in particular, tend to show a better skill than the neutral years.
작성자
Kim et al.
작성일
2024.09.04
조회수
48
2012
Observational evidences of double cropping impacts on the climate in the northern China plains
Abstract: The impacts of harvested cropland in the double cropping region (DCR) of the northern China plains (NCP) on the regional climate are examined using surface meteorological data and the satellite-derived normalized difference vegetation index (NDVI) and land surface temperature (LST). The NDVI data are used to distinguish the DCR from the single cropping region (SCR) in the NCP. Notable increases in LST in the period May–June are found in the area identified as the DCR on the basis of the NDVI data. The difference between the mean daily maximum temperature averaged over the DCR and SCR stations peaks at 1.27°C in June. The specific humidity in the DCR is significantly smaller than in the SCR. These results suggest that the enhanced agricultural production by multiple cropping may amplify regional warming and aridity to further modify the regional climate in addition to the global climate change. Results in this study may also be used as a quantitative observed reference state of the crop/vegetation effects for future climate modeling studies.
작성자
Ho et al.
작성일
2024.09.04
조회수
42
2012
Responses of two invasive plants under various microclimate conditions in the Seoul metropolitan region
Abstract: The possible consequences of global warming on plant communities and ecosystems have wide-ranging ramifications. We examined how environmental change affects plant growth as a function of the variations in the microclimate along an urban–suburban climate gradient for two allergy-inducing, invasive plants, Humulus japonicus and Ambrosia artemisiifolia var. elatior. The environmental factors and plant growth responses were measured at two urban sites (Gangbuk and Seongbuk) and two suburban sites (Goyang and Incheon) around Seoul, South Korea. The mean temperatures and CO2 concentrations differed significantly between the urban (14.8 °C and 439 ppm CO2) and suburban (13.0 °C and 427 ppm CO2) sites. The soil moisture and nitrogen contents of the suburban sites were higher than those at the urban sites, especially for the Goyang site. The two invasive plants showed significantly higher biomasses and nitrogen contents at the two urban sites. We conducted experiments in a greenhouse to confirm the responses of the plants to increased temperatures, and we found consistently higher growth rates under conditions of higher temperatures. Because we controlled the other factors, the better performance of the two invasive plants appears to be primarily attributable to their responses to temperature. Our study demonstrates that even small temperature changes in the environment can confer significant competitive advantages to invasive species. As habitats become urbanized and warmer, these invasive plants should be able to displace native species, which will adversely affect people living in these areas.
작성자
Song et al.
작성일
2024.09.04
조회수
77
2012
Sensitivity of satellite-derived wind retrieval over cloudy scenes to target selection in tracking and pixel selection..
Abstract: Satellite-derived atmospheric motion vectors (AMVs) are useful in weather analyses such as for identifying tropical lows, wind shears, and jet locations. AMVs are assimilated into numerical weather prediction models, particularly for ocean areas where wind observations are sparse. An AMV's accuracy is closely related to the processes of target tracking and height assignment (HA). The objective of this paper is to investigate the sensitivity of satellite-derived wind retrieval in cloudy scenes to the main components in these processes. AMVs are retrieved by identifying and tracking targets using advanced pattern-matching techniques based on cross-correlation statistics. In tracking targets, the main components of the AMV algorithm are the target selection methods such as the target box size, the grid size, the time interval between satellite images, and the method for determining the locations of targets. This study reveals that the optimal sizes of the target and grid could be determined differently according to the channel used for wind observation. The time interval between satellite images has a significant impact on the number of vectors with high quality and high accuracy. The HA method is also an important factor in determining the AMVs' accuracy. The heights of most vectors are assigned to cloud-top pressures using the representative radiances, and the current algorithm uses the coldest pixels to set these representative radiances. The template image used for feature tracking may contain various clouds with different movements and different heights. Therefore, without any information on feature tracking, the current approach may lead to HA errors. To mitigate these HA errors, a new approach using the individual-pixel contribution rate is tested. It tends to correct the heights of the AMVs using the water vapor channel and reduces the wind speed bias and root-mean-square vector difference. Full title: Sensitivity of satellite-derived wind retrieval over cloudy scenes to target selection in tracking and pixel selection in height assignment
작성자
Park et al.
작성일
2024.08.30
조회수
67
2012
The observed variation in cloud-induced longwave radiation in response to SST over the Pacific warm pool from MTSAT-1R..
Abstract: This study investigated variations in outgoing longwave radiation (OLR) in response to changes in sea surface temperature (SST) over the Pacific warm pool area (20°N–20°S, 130°E–170°W). OLR values were obtained from recent (January 2008–June 2010) geostationary window channel imagery at hourly resolution, which resolves processes associated with tropical convective clouds. We used linear regression analysis with the domain-averaged OLR and SST anomalies (i.e., ΔOLR, ΔSST; deviations from their 90-day moving averages). Results show that the regression slope appears to be significant only with SST least-affected by cloud radiative forcing, for which SST needs to be obtained as daily average over cloud-free regions (ΔSSTclear). The estimated value of ΔOLR/ΔSSTclear is 15.72 W m−2 K−1, indicating the presence of strong outgoing longwave radiation in response to surface warming. This atmospheric cooling effect is found to be primarily associated with reduced areal coverage of clouds (−14.4% K−1).
작성자
Cho et al.
작성일
2024.08.30
조회수
73
2012
The potential of vegetation feedback to alleviate climate aridity over the U. S. associated with a 2×CO2 climate...
Abstract: This study examines the potential impact of vegetation feedback on changes in summer climate aridity over the contiguous United States (US) due to the doubling of atmospheric CO2 concentration using a set of 100-year-long climate simulations made by a global climate model interactively coupled with a dynamic vegetation model. The Thornthwaite moisture index (Im), which quantifies climate aridity on the basis of atmospheric water supply (i.e., precipitation) and atmospheric water demand (i.e., potential evapotranspiration, PET), is used to measure climate aridity. Warmer atmosphere and drier surface resulting from increased CO2 concentration increase climate aridity over most of the contiguous US. This phenomenon is due to larger increments in PET than in precipitation, regardless of the presence or absence of vegetation feedback. Compared to simulations without active dynamic vegetation feedback, the presence of vegetation feedback significantly alleviates the increase in aridity. This vegetation-feedback effect is most noticeable in the subhumid regions such as southern, midwestern and northwestern US, primarily by the increasing vegetation greenness. In these regions, the greening in response to warmer temperatures enhances moisture transfer from soil to atmosphere by evapotranspiration (ET). The increased ET and subsequent moistening over land areas result in weaker surface warming (1–2 K) and PET (3–10 mm month−1), and greater precipitation (4–10 mm month−1). Collectively, they result in moderate increases in Im. Our results suggest that moistening by enhanced vegetation feedback may prevent aridification under climatic warming especially in areas vulnerable to climate change, with consequent implications for mitigation strategies. Full title: The potential of vegetation feedback to alleviate climate aridity over the United States associated with a 2×CO2 climate condition
작성자
Park et al.
작성일
2024.08.30
조회수
63
2012
Tropical cyclone contribution to the interdecadal change in summer rainfall over South China in the early 1990s
This study investigated the tropical cyclone (TC) rainfall (PTC) contribution to the interdecadal change in summer (June, July and August) rainfall (PTotal) over South China between 1981-1992 (ID1) and 1993-2002 (ID2). In an area-averaged sense, the interdecadal change in PTotal was largely attributed to non-TC rainfall for the summer total and months of June and July, while PTC became comparable in August. When the month-to-month spatial variability was considered, noticeable negative PTC contributions showed up over the southeastern coast, Hainan Island, and Taiwan in June and over the southern coastal regions in July. In contrast, a positive PTC contribution spread over South China with its maxima over the southern coastal regions in August, a pattern which appeared to be diametrically opposed to that of the negative PTC contribution in July, though the latter was less significant. The negative PTC contribution over the coastal and insular regions in June and July corresponded to less TC activity there. In June, it was attributed to reduced basin-wide TC activity due to prevailing unfavorable large-scale environments in ID2, whereas, in July, to less TC approaches from the Philippine Sea due to an enhanced cyclonic circulation centered on Taiwan in ID2. Conversely, in August, the overall enhanced positive PTC contribution was mainly by the direct influences of increased TC formations over the South China Sea in ID2.
작성자
Kim et al.
작성일
2024.08.30
조회수
65
2012
The influences of interannual stratification variability and wind stress forcing on ENSO before and after the 1976...
Abstract: In order to understand the change in oceanic variability associated with the climate shift of the mid-1970s, we analyze the contribution of momentum forcing to the leading baroclinic modes over the tropical Pacific using Simple Ocean Data Assimilation (SODA, version 2.0.2) for the period of 1958–1997. Specifically, we look at the statistical relationship between the wind projection coefficients and climate indices and attempt to provide a physical explanation for the observed changes. It is found that the wind stress projection coefficients according to the oceanic baroclinic modes are different in terms of their magnitude and phase in the tropical Pacific, reflecting a specific forcing associated with each mode before and after the 1976 climate shift. Compared to that before the 1970s, the first baroclinic mode is had a greater effect on the interannual sea surface temperature due to equatorial wave dynamics, and there was an increased delayed response of the second baroclinic mode variability to the interannual atmospheric forcing after the late 1970s. This reflects changes in ENSO feedback processes associated with the climate shift. Our analysis further indicates that, after the late 1970s, there was a decrease in the wind stress forcing projecting onto the Ekman layer, which is associated with increased mixed-layer depth. This result suggests that the changes in the ENSO properties before and after the late 1970s are largely associated with the changes in the way in which the wind stress forcing is dynamically projected onto the surface layer of the tropical Pacific Ocean over interannual timescales. Full title: The influences of interannual stratification variability and wind stress forcing on ENSO before and after the 1976 climate shift
작성자
Lee et al.
작성일
2024.07.09
조회수
53
2012
A projection of extreme climate events in the 21st century over East Asia using the Community Climate System Model 3
Abstract: A series of coupled atmosphere-ocean-land global climate model (GCM) simulations using the National Center for Atmospheric Research (NCAR) Community Climate System Model 3 (CCSM3) has been performed for the period 1870–2099 at a T85 horizontal resolution following the GCM experimental design suggested in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). First, a hindcast was performed using the atmospheric concentrations of three greenhouse gases (CO2, CH4, N2O) specified annually and globally on the basis of observations for the period 1870–1999. The hindcast results were compared with observations to evaluate the GCM’s reliability in future climate simulations. Second, climate projections for a 100-year period (2000–2099) were made using six scenarios of the atmospheric concentrations of the three greenhouse gases according to the A1FI, A1T, A1B, A2, B1, and B2 emission profiles of the Special Report on Emissions Scenarios. The present CCSM simulations are found to be consistent with IPCC’s AR4 results in the temporal and spatial distributions for both the present-day and future periods. The GCM results were used to examine the changes in extreme temperatures and precipitation in East Asia and Korea. The extreme temperatures were categorized into warm and cold events: the former includes tropical nights, warm days, and heat waves during summer (June–July–August) and the latter includes frost days, cold days, and cold surges during winter (December–January–February). Focusing on Korea, the results predict more frequent heat waves in response to future emissions: the projected percentage changes between the present day and the late 2090s range from 294% to 583% depending on the emission scenario. The projected global warming is predicted to decrease the frequency of cold extreme events; however, the projected changes in cold surge frequency are not statistically significant. Whereas the number of cold surges in the A1FI emission profile decreases from the present-day value by up to 24%, the decrease in the B1 scenario is less than 1%. The frequency and intensity of extreme precipitation events year-round were examined. Both the frequency and the intensity of these events are predicted to increase in the region around Korea. The present results will be helpful for establishing an adaptation strategy for possible climate change nationwide, especially extreme climate events, associated with global warming.
작성자
Ho et al.
작성일
2024.07.09
조회수
66
2011
Browning in desert boundaries over Asia in the recent decades
Abstract: In this study, the changes in desert boundaries in Asia (Gobi, Karakum, Lut, Taklimakan, and Thar deserts) during the growing season (April–October) in the years 1982–2008 were investigated by analyzing the normalized difference vegetation index (NDVI), precipitation, and temperature. In the desert boundary regions, the domain mean NDVI values increased by 7.2% per decade in 1982–1998 but decreased by 6.8% per decade thereafter. Accordingly, the bare soil areas (or nonvegetated areas) of the inside of the desert boundaries contracted by 9.8% per decade in the 1990s and expanded by 8.7% per decade in the 2000s. It is noted that the five deserts experience nearly simultaneous NDVI changes although they cover a very diverse area of Asia. In contrast, changes in temperature and precipitation in the deserts show rather diverse results. In desert boundaries located along 40°N (Gobi, Taklimakan, and Karakum), the decadal changes in vegetation greenness were mainly related to regional climate during the entire analysis period. Precipitation increased in the 1990s, providing favorable conditions for vegetation growth (i.e., greening), but precipitation reduced (19 mm per decade) and warming intensified (0.7°C per decade) in the 2000s, causing less moisture to be available for vegetation growth (i.e., browning). In desert boundaries below 40°N (Lut and Thar), although an increase in precipitation (8 mm per decade) led to greening in the 1990s, local changes in precipitation and temperature did not necessarily cause browning in the 2000s. Observed multidecadal changes in vegetation greenness in the present study suggest that under significant global and/or regional warming, changes in moisture availability for vegetation growth in desert boundaries are an important factor when understanding decadal changes in areas vulnerable to desertification over Asia.
작성자
Jeong et al.
작성일
2024.07.09
조회수
59
2011
첫 페이지로 이동하기
이전 페이지로 이동하기
2
3
4
5
6
7
8
9
10
11
다음 페이지로 이동하기
마지막 페이지로 이동하기