이화여자대학교
사이트맵
이화여자대학교
기후물리실험실
About Us
인사말
찾아오는 길
Research
Publications
국제학술지
국내학술지
Members
교수
박사후 연구원
학생
방문학생
전 구성원
Board
사진
공지사항
모바일메뉴 열기
이화여자대학교
기후물리실험실
About Us
인사말
찾아오는 길
Research
Publications
국제학술지
국내학술지
Members
교수
박사후 연구원
학생
방문학생
전 구성원
Board
사진
공지사항
이화여자대학교
모바일메뉴 닫기
SITEMAP
Publications
홈
Publications
About Us
Research
Publications
Members
Board
국제학술지
국제학술지
국내학술지
국제학술지
공지
(2025. 10. 28.)
현재까지 출판된 논문 목록입니다. 아직 준비 중인 논문은 포함하지 않은 점 참고 바랍니다.
게시글 검색
검색분류선택
전체
전체
제목
내용
작성자
검색어
검색
Track-pattern-based model for seasonal prediction of tropical cyclone activity over the western North Pacific
Abstract: Skillful predictions of the seasonal tropical cyclone (TC) activity are important in mitigating the potential destruction from the TC approach/landfall in many coastal regions. In this study, a novel approach for the prediction of the seasonal TC activity over the western North Pacific is developed to provide useful probabilistic information on the seasonal characteristics of the TC tracks and vulnerable areas. The developed model, which is termed the “track-pattern-based model,” is characterized by two features: 1) a hybrid statistical–dynamical prediction of the seasonal activity of seven track patterns obtained by fuzzy c-means clustering of historical TC tracks and 2) a technique that enables researchers to construct a forecasting map of the spatial probability of the seasonal TC track density over the entire basin. The hybrid statistical–dynamical prediction for each pattern is based on the statistical relationship between the seasonal TC frequency of the pattern and the seasonal mean key predictors dynamically forecast by the National Centers for Environmental Prediction Climate Forecast System in May. The leave-one-out cross validation shows good prediction skill, with the correlation coefficients between the hindcasts and the observations ranging from 0.71 to 0.81. Using the predicted frequency and the climatological probability for each pattern, the authors obtain the forecasting map of the seasonal TC track density by combining the TC track densities of the seven patterns. The hindcasts of the basinwide seasonal TC track density exhibit good skill in reproducing the observed pattern. The El Niño–/La Niña–related years, in particular, tend to show a better skill than the neutral years.
작성자
Kim et al.
작성일
2024.09.04
조회수
45
2012
Observational evidences of double cropping impacts on the climate in the northern China plains
Abstract: The impacts of harvested cropland in the double cropping region (DCR) of the northern China plains (NCP) on the regional climate are examined using surface meteorological data and the satellite-derived normalized difference vegetation index (NDVI) and land surface temperature (LST). The NDVI data are used to distinguish the DCR from the single cropping region (SCR) in the NCP. Notable increases in LST in the period May–June are found in the area identified as the DCR on the basis of the NDVI data. The difference between the mean daily maximum temperature averaged over the DCR and SCR stations peaks at 1.27°C in June. The specific humidity in the DCR is significantly smaller than in the SCR. These results suggest that the enhanced agricultural production by multiple cropping may amplify regional warming and aridity to further modify the regional climate in addition to the global climate change. Results in this study may also be used as a quantitative observed reference state of the crop/vegetation effects for future climate modeling studies.
작성자
Ho et al.
작성일
2024.09.04
조회수
39
2012
Responses of two invasive plants under various microclimate conditions in the Seoul metropolitan region
Abstract: The possible consequences of global warming on plant communities and ecosystems have wide-ranging ramifications. We examined how environmental change affects plant growth as a function of the variations in the microclimate along an urban–suburban climate gradient for two allergy-inducing, invasive plants, Humulus japonicus and Ambrosia artemisiifolia var. elatior. The environmental factors and plant growth responses were measured at two urban sites (Gangbuk and Seongbuk) and two suburban sites (Goyang and Incheon) around Seoul, South Korea. The mean temperatures and CO2 concentrations differed significantly between the urban (14.8 °C and 439 ppm CO2) and suburban (13.0 °C and 427 ppm CO2) sites. The soil moisture and nitrogen contents of the suburban sites were higher than those at the urban sites, especially for the Goyang site. The two invasive plants showed significantly higher biomasses and nitrogen contents at the two urban sites. We conducted experiments in a greenhouse to confirm the responses of the plants to increased temperatures, and we found consistently higher growth rates under conditions of higher temperatures. Because we controlled the other factors, the better performance of the two invasive plants appears to be primarily attributable to their responses to temperature. Our study demonstrates that even small temperature changes in the environment can confer significant competitive advantages to invasive species. As habitats become urbanized and warmer, these invasive plants should be able to displace native species, which will adversely affect people living in these areas.
작성자
Song et al.
작성일
2024.09.04
조회수
72
2012
Sensitivity of satellite-derived wind retrieval over cloudy scenes to target selection in tracking and pixel selection..
Abstract: Satellite-derived atmospheric motion vectors (AMVs) are useful in weather analyses such as for identifying tropical lows, wind shears, and jet locations. AMVs are assimilated into numerical weather prediction models, particularly for ocean areas where wind observations are sparse. An AMV's accuracy is closely related to the processes of target tracking and height assignment (HA). The objective of this paper is to investigate the sensitivity of satellite-derived wind retrieval in cloudy scenes to the main components in these processes. AMVs are retrieved by identifying and tracking targets using advanced pattern-matching techniques based on cross-correlation statistics. In tracking targets, the main components of the AMV algorithm are the target selection methods such as the target box size, the grid size, the time interval between satellite images, and the method for determining the locations of targets. This study reveals that the optimal sizes of the target and grid could be determined differently according to the channel used for wind observation. The time interval between satellite images has a significant impact on the number of vectors with high quality and high accuracy. The HA method is also an important factor in determining the AMVs' accuracy. The heights of most vectors are assigned to cloud-top pressures using the representative radiances, and the current algorithm uses the coldest pixels to set these representative radiances. The template image used for feature tracking may contain various clouds with different movements and different heights. Therefore, without any information on feature tracking, the current approach may lead to HA errors. To mitigate these HA errors, a new approach using the individual-pixel contribution rate is tested. It tends to correct the heights of the AMVs using the water vapor channel and reduces the wind speed bias and root-mean-square vector difference. Full title: Sensitivity of satellite-derived wind retrieval over cloudy scenes to target selection in tracking and pixel selection in height assignment
작성자
Park et al.
작성일
2024.08.30
조회수
63
2012
The observed variation in cloud-induced longwave radiation in response to SST over the Pacific warm pool from MTSAT-1R..
Abstract: This study investigated variations in outgoing longwave radiation (OLR) in response to changes in sea surface temperature (SST) over the Pacific warm pool area (20°N–20°S, 130°E–170°W). OLR values were obtained from recent (January 2008–June 2010) geostationary window channel imagery at hourly resolution, which resolves processes associated with tropical convective clouds. We used linear regression analysis with the domain-averaged OLR and SST anomalies (i.e., ΔOLR, ΔSST; deviations from their 90-day moving averages). Results show that the regression slope appears to be significant only with SST least-affected by cloud radiative forcing, for which SST needs to be obtained as daily average over cloud-free regions (ΔSSTclear). The estimated value of ΔOLR/ΔSSTclear is 15.72 W m−2 K−1, indicating the presence of strong outgoing longwave radiation in response to surface warming. This atmospheric cooling effect is found to be primarily associated with reduced areal coverage of clouds (−14.4% K−1).
작성자
Cho et al.
작성일
2024.08.30
조회수
70
2012
The potential of vegetation feedback to alleviate climate aridity over the U. S. associated with a 2×CO2 climate...
Abstract: This study examines the potential impact of vegetation feedback on changes in summer climate aridity over the contiguous United States (US) due to the doubling of atmospheric CO2 concentration using a set of 100-year-long climate simulations made by a global climate model interactively coupled with a dynamic vegetation model. The Thornthwaite moisture index (Im), which quantifies climate aridity on the basis of atmospheric water supply (i.e., precipitation) and atmospheric water demand (i.e., potential evapotranspiration, PET), is used to measure climate aridity. Warmer atmosphere and drier surface resulting from increased CO2 concentration increase climate aridity over most of the contiguous US. This phenomenon is due to larger increments in PET than in precipitation, regardless of the presence or absence of vegetation feedback. Compared to simulations without active dynamic vegetation feedback, the presence of vegetation feedback significantly alleviates the increase in aridity. This vegetation-feedback effect is most noticeable in the subhumid regions such as southern, midwestern and northwestern US, primarily by the increasing vegetation greenness. In these regions, the greening in response to warmer temperatures enhances moisture transfer from soil to atmosphere by evapotranspiration (ET). The increased ET and subsequent moistening over land areas result in weaker surface warming (1–2 K) and PET (3–10 mm month−1), and greater precipitation (4–10 mm month−1). Collectively, they result in moderate increases in Im. Our results suggest that moistening by enhanced vegetation feedback may prevent aridification under climatic warming especially in areas vulnerable to climate change, with consequent implications for mitigation strategies. Full title: The potential of vegetation feedback to alleviate climate aridity over the United States associated with a 2×CO2 climate condition
작성자
Park et al.
작성일
2024.08.30
조회수
60
2012
Tropical cyclone contribution to the interdecadal change in summer rainfall over South China in the early 1990s
This study investigated the tropical cyclone (TC) rainfall (PTC) contribution to the interdecadal change in summer (June, July and August) rainfall (PTotal) over South China between 1981-1992 (ID1) and 1993-2002 (ID2). In an area-averaged sense, the interdecadal change in PTotal was largely attributed to non-TC rainfall for the summer total and months of June and July, while PTC became comparable in August. When the month-to-month spatial variability was considered, noticeable negative PTC contributions showed up over the southeastern coast, Hainan Island, and Taiwan in June and over the southern coastal regions in July. In contrast, a positive PTC contribution spread over South China with its maxima over the southern coastal regions in August, a pattern which appeared to be diametrically opposed to that of the negative PTC contribution in July, though the latter was less significant. The negative PTC contribution over the coastal and insular regions in June and July corresponded to less TC activity there. In June, it was attributed to reduced basin-wide TC activity due to prevailing unfavorable large-scale environments in ID2, whereas, in July, to less TC approaches from the Philippine Sea due to an enhanced cyclonic circulation centered on Taiwan in ID2. Conversely, in August, the overall enhanced positive PTC contribution was mainly by the direct influences of increased TC formations over the South China Sea in ID2.
작성자
Kim et al.
작성일
2024.08.30
조회수
60
2012
The influences of interannual stratification variability and wind stress forcing on ENSO before and after the 1976...
Abstract: In order to understand the change in oceanic variability associated with the climate shift of the mid-1970s, we analyze the contribution of momentum forcing to the leading baroclinic modes over the tropical Pacific using Simple Ocean Data Assimilation (SODA, version 2.0.2) for the period of 1958–1997. Specifically, we look at the statistical relationship between the wind projection coefficients and climate indices and attempt to provide a physical explanation for the observed changes. It is found that the wind stress projection coefficients according to the oceanic baroclinic modes are different in terms of their magnitude and phase in the tropical Pacific, reflecting a specific forcing associated with each mode before and after the 1976 climate shift. Compared to that before the 1970s, the first baroclinic mode is had a greater effect on the interannual sea surface temperature due to equatorial wave dynamics, and there was an increased delayed response of the second baroclinic mode variability to the interannual atmospheric forcing after the late 1970s. This reflects changes in ENSO feedback processes associated with the climate shift. Our analysis further indicates that, after the late 1970s, there was a decrease in the wind stress forcing projecting onto the Ekman layer, which is associated with increased mixed-layer depth. This result suggests that the changes in the ENSO properties before and after the late 1970s are largely associated with the changes in the way in which the wind stress forcing is dynamically projected onto the surface layer of the tropical Pacific Ocean over interannual timescales. Full title: The influences of interannual stratification variability and wind stress forcing on ENSO before and after the 1976 climate shift
작성자
Lee et al.
작성일
2024.07.09
조회수
49
2012
A projection of extreme climate events in the 21st century over East Asia using the Community Climate System Model 3
Abstract: A series of coupled atmosphere-ocean-land global climate model (GCM) simulations using the National Center for Atmospheric Research (NCAR) Community Climate System Model 3 (CCSM3) has been performed for the period 1870–2099 at a T85 horizontal resolution following the GCM experimental design suggested in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). First, a hindcast was performed using the atmospheric concentrations of three greenhouse gases (CO2, CH4, N2O) specified annually and globally on the basis of observations for the period 1870–1999. The hindcast results were compared with observations to evaluate the GCM’s reliability in future climate simulations. Second, climate projections for a 100-year period (2000–2099) were made using six scenarios of the atmospheric concentrations of the three greenhouse gases according to the A1FI, A1T, A1B, A2, B1, and B2 emission profiles of the Special Report on Emissions Scenarios. The present CCSM simulations are found to be consistent with IPCC’s AR4 results in the temporal and spatial distributions for both the present-day and future periods. The GCM results were used to examine the changes in extreme temperatures and precipitation in East Asia and Korea. The extreme temperatures were categorized into warm and cold events: the former includes tropical nights, warm days, and heat waves during summer (June–July–August) and the latter includes frost days, cold days, and cold surges during winter (December–January–February). Focusing on Korea, the results predict more frequent heat waves in response to future emissions: the projected percentage changes between the present day and the late 2090s range from 294% to 583% depending on the emission scenario. The projected global warming is predicted to decrease the frequency of cold extreme events; however, the projected changes in cold surge frequency are not statistically significant. Whereas the number of cold surges in the A1FI emission profile decreases from the present-day value by up to 24%, the decrease in the B1 scenario is less than 1%. The frequency and intensity of extreme precipitation events year-round were examined. Both the frequency and the intensity of these events are predicted to increase in the region around Korea. The present results will be helpful for establishing an adaptation strategy for possible climate change nationwide, especially extreme climate events, associated with global warming.
작성자
Ho et al.
작성일
2024.07.09
조회수
62
2011
Browning in desert boundaries over Asia in the recent decades
Abstract: In this study, the changes in desert boundaries in Asia (Gobi, Karakum, Lut, Taklimakan, and Thar deserts) during the growing season (April–October) in the years 1982–2008 were investigated by analyzing the normalized difference vegetation index (NDVI), precipitation, and temperature. In the desert boundary regions, the domain mean NDVI values increased by 7.2% per decade in 1982–1998 but decreased by 6.8% per decade thereafter. Accordingly, the bare soil areas (or nonvegetated areas) of the inside of the desert boundaries contracted by 9.8% per decade in the 1990s and expanded by 8.7% per decade in the 2000s. It is noted that the five deserts experience nearly simultaneous NDVI changes although they cover a very diverse area of Asia. In contrast, changes in temperature and precipitation in the deserts show rather diverse results. In desert boundaries located along 40°N (Gobi, Taklimakan, and Karakum), the decadal changes in vegetation greenness were mainly related to regional climate during the entire analysis period. Precipitation increased in the 1990s, providing favorable conditions for vegetation growth (i.e., greening), but precipitation reduced (19 mm per decade) and warming intensified (0.7°C per decade) in the 2000s, causing less moisture to be available for vegetation growth (i.e., browning). In desert boundaries below 40°N (Lut and Thar), although an increase in precipitation (8 mm per decade) led to greening in the 1990s, local changes in precipitation and temperature did not necessarily cause browning in the 2000s. Observed multidecadal changes in vegetation greenness in the present study suggest that under significant global and/or regional warming, changes in moisture availability for vegetation growth in desert boundaries are an important factor when understanding decadal changes in areas vulnerable to desertification over Asia.
작성자
Jeong et al.
작성일
2024.07.09
조회수
55
2011
Different characteristics of cold day and cold surge frequency over East Asia in a global warming situation
Abstract: This study investigates the changes in winter cold extreme events over East Asia in the present and future climates. Two distinct terms to indicate cold extreme events are analyzed: “cold day,” which describes a temperature below a certain threshold value (e.g., simply cold weather), and “cold surge,” which describes an abrupt temperature drop (e.g., relatively colder weather than a previous day). We analyze both observations and long-term climate simulations from 13 atmospheric and oceanic coupled global climate models (CGCMs). The geographical distribution of sea level pressure corresponding to a cold day (cold surge) is represented by a dipole (wave train) feature. Although cold day and cold surge show similar patterns of surface air temperature, they are induced by the out-of-phase sea level pressures. From the results of our analysis of a series of future projections for the mid and late twenty-first century using the 13 CGCMs, cold day occurrences clearly decrease with an increasing mean temperature (a correlation coefficient of −0.49), but the correlation between cold surge occurrences and the mean temperature is insignificant (a correlation coefficient of 0.08), which is supported by the same results in recent observation periods (1980–2006). Thus, it is anticipated that cold surge occurrences will remain frequent even in future warmer climate. This deduction is based on the future projections in which the change in the day-to-day temperature variability is insignificant, although the mean temperature shows significant increase. The present results suggest that living things in the future, having acclimatized to a warmer climate, would suffer the strong impact of cold surges, and hence the issue of vulnerability to cold surges should be treated seriously in the future.
작성자
Park et al.
작성일
2024.07.09
조회수
123
2011
Diurnal circulations and their multi-scale interaction leading to rainfall over the SCS upstream of the Philippines...
Abstract: The morning diurnal precipitation maximum over the coastal sea upstream of the Philippines during intraseasonal westerly wind bursts is examined from observations and numerical model simulations. A well-defined case of precipitation and large-scale circulation over the coastal sea west of the Philippines during 17–27 June 2004 is selected as a representative case. The hypothesis is that the mesoscale diurnal circulation over the Philippines and a large-scale diurnal circulation that is induced by large-scale differential heating over Asian continent and the surrounding ocean interact to produce the offshore precipitation maximum during the morning. Three-hourly combined satellite microwave and infrared rainfall retrievals define the morning rainfall peak during this period, and then later the stratiform rain area extends toward the open sea. A control numerical simulation in which a grid-nudging four-dimensional data assimilation (FDDA) is applied to force the large-scale diurnal circulation represents reasonably well the morning rainfall maximum. An enhanced low-level convergence similar to observations is simulated due to the interaction of the local- and large-scale diurnal circulations. The essential role of the local-scale diurnal circulation is illustrated in a sensitivity test in which the solar zenith angle is fixed at 7 am to suppress this diurnal circulation. The implication for climate diagnosis or modeling of such upstream coastal sea precipitation maxima is that the diurnal variations of both the local- and the large-scale circulations must be taken into consideration. Full title: Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts
작성자
Park et al.
작성일
2024.07.09
조회수
65
2011
High-PM10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions
Abstract: This study examines the origin of and favorable meteorological conditions for high concentrations of particulate matter with a diameter <10 μm (PM10) in Seoul, Korea, in conjunction with systematic PM10 pathways. High-PM10 episodes, defined as days in which the 24-h mean PM10 exceeds 100 μg m−3, occurred 254 times during the period 2001–2008. Based on back trajectory and clustering analyses, the background sources of the high-PM10 in Seoul are categorized as external (176 episodes) and internal sources (78 episodes). The primary external sources include the industrial areas in inland China and the Gobi desert. The ratio of external to internal sources varies strongly according to the season, with highs in winter and spring and lows in summer. A composite analysis of meteorological factors for high-PM10 episodes with respect to the two sources (i.e., external and internal) suggests that an anomalous high pressure over Korea accompanied by an anomalous low pressure over the source regions favors both upper-level transport from the external source regions and the local accumulation of atmospheric PM10 in Seoul. The origins of high-PM10 episodes and their associated meteorological conditions found in this study can provide theoretical underpinnings for dust control strategies. Highlights: ► We examine the origin and the meteorologies of high-PM10 episodes in Seoul, Korea. ► The episodes by external sources are more frequent than those by internal sources. ► Wind and pressure fields determine both the occurrence and the type of episodes.
작성자
Lee et al.
작성일
2024.07.09
조회수
68
2011
Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model
Abstract: This study examines simulated typhoon sensitivities to spectral nudging (SN) to investigate the effects on values added by regional climate models, which are not properly resolved by low-resolution global models. SN is suitably modified to mitigate its negative effects while maintaining the positive effects, and the effects of the modified SN are investigated through seasonal simulations. In the sensitivity experiments to nudging intervals of SN, the tracks of simulated typhoons are improved as the SN effect increases; however, the intensities of the simulated typhoons decrease due to the suppression of the typhoon developing process by SN. To avoid such suppression, SN is applied at intermittent intervals only when the deviation between the large-scale driving forcing and the model solution is large. In seasonal simulations, intermittent SN is applied for only 7% of the total time steps; however, this results in not only maintaining the large-scale features of monsoon circulation and precipitation corresponding to observations but also improving the intensification of mesoscale features by reducing the suppression.
작성자
Cha et al.
작성일
2024.07.09
조회수
57
2011
Impact of local sea surface temperature anomaly over the western North Pacific on extreme East Asian summer monsoon
Abstract: In this study, the anomalous characteristics of observed large-scale synoptic fields in the extreme East Asian summer monsoon (EASM) years are analyzed, and the impact of the local sea surface temperature (SST) anomaly over the western North Pacific (WNP) on the extreme EASM is investigated through sensitivity experiments of 28 years EASM simulations to the local SST over the WNP. The observation analysis reveals that the extreme EASM is influenced more by anomalous large-scale atmospheric features such as monsoon circulations and the western North Pacific subtropical high than the local SST anomaly over the WNP. However, the results of the sensitivity experiments show that the local SST anomaly has an implicit impact on the extreme EASM. The patterns of differences in precipitation between the experiment forced by observed SST in each year and the experiment forced by climatological SST over the WNP are opposite to anomaly patterns of observed precipitation in the extreme EASM years. This is because the SST anomaly over the WNP plays a role in reducing precipitation anomaly by changing surface latent heat flux and monsoon circulations. In particular, the local SST anomaly over the WNP decreases anomalies of large-scale circulations, i.e., the local Hadley and the Walker circulations. Thus, the local SST anomaly over the WNP plays a role in decreasing the interannual variability of the EASM.
작성자
Cha et al.
작성일
2024.07.09
조회수
72
2011
Impact of urban warming on earlier spring flowering in Korea
Abstract: Using long-term (1954–2004) observations of four selected species in South Korea: goldenbell (Forsythia koreana), azalea (Rhododendron mucronulatum), cherry (Prunus yedoensis), and peach (Prunus persica), the impact of urban warming on spring flowering was investigated. Trends of early spring temperatures and first-flowering dates (FFDs) of the four plants were cross-compared among nine differently urbanized cities. It was clearly observed that urban warming has led to an advance in the timing of first-flowering of several days to weeks during recent decades, while the intrinsic physiology of plants to sense thermal energy has not been changed. The degree of advancement of the FFD was observed to be roughly proportional to degree of urbanization. Moreover, the sensitivity of the FFD to urban warming was estimated to be higher for the shrub species (−9.07 and −6.64 days °C−1 for goldenbell and azalea, respectively) than the tree species (−2.46 and −2.90 days °C−1 for peach and cherry, respectively). Our results suggest that the impact of urban warming should be considered as an influential factor which drives changes in the regional natural environment, especially in regions of rapid urbanization.
작성자
Jeong et al.
작성일
2024.07.09
조회수
57
2011
Impact of vegetation feedback on the temperature and its diurnal range over the N. Hem. during summer in a 2×CO2 climate
Abstract: This study examines the potential impact of vegetation feedback on the changes in the diurnal temperature range (DTR) due to the doubling of atmospheric CO2 concentrations during summer over the Northern Hemisphere using a global climate model equipped with a dynamic vegetation model. Results show that CO2 doubling induces significant increases in the daily mean temperature and decreases in DTR regardless of the presence of the vegetation feedback effect. In the presence of vegetation feedback, increase in vegetation productivity related to warm and humid climate lead to (1) an increase in vegetation greenness in the mid-latitude and (2) a greening and the expansion of grasslands and boreal forests into the tundra region in the high latitudes. The greening via vegetation feedback induces contrasting effects on the temperature fields between the mid- and high-latitude regions. In the mid-latitudes, the greening further limits the increase in Tmax more than Tmin, resulting in further decreases in DTR because the greening amplifies evapotranspiration and thus cools daytime temperature. The greening in high-latitudes, however, it reinforces the warming by increasing Tmax more than Tmin to result in a further increase in DTR from the values obtained without vegetation feedback. This effect on Tmax and DTR in the high latitude is mainly attributed to the reduction in surface albedo and the subsequent increase in the absorbed insolation. Present study indicates that vegetation feedback can alter the response of the temperature field to increases in CO2 mainly by affecting the Tmax and that its effect varies with the regional climate characteristics as a function of latitudes. Full title: Impact of vegetation feedback on the temperature and its diurnal range over the Northern Hemisphere during summer in a 2×CO2 climate
작성자
Jeong et al.
작성일
2024.07.09
조회수
61
2011
Influence of Arctic Oscillation on dust activity over northeast Asia
Abstract: The northeast Asian dust process during the spring seasons in the years 1982–2006 was simulated by the Integrated Wind Erosion Modeling System (IWEMS). The influence of Arctic Oscillation (AO) on dust activities was investigated by analyzing surface observations and model simulations. There is a significant relationship between AO and dust activity; a positive AO phase is associated with decreased (increased) dust storm frequency in Mongolia (Taklimakan Desert) and enhanced anticyclonic (southeastward) dust transport over northwestern China (North China). The AO-dust relation is mainly due to changes in the westerly jet and geopotential height in the middle troposphere; a positive AO phase induces a northward shift of the polar jet, an intensified westerly jet over northern Tibetan Plateau, and a positive geopotential height anomaly over Mongolia. The northern shift of the polar jet reduces the frequency of intense cyclones in Mongolia, thereby causing a decrease in the dust storm frequency. The intensified westerly jet stream over the northern Tibetan Plateau increases the dust storm frequency in the Taklimakan Desert. The positive geopotential height anomaly over Mongolia initiates an anticyclonic dust transport anomaly in the middle troposphere over northwestern China. It also induces a southeastward dust transport anomaly over North China. The reverse situations are true for a negative AO phase. Research highlights: ► AO shows a negative correlation with dust storm frequency in Mongolia. ► AO has a positive correlation with dust storm frequency in Taklimakan Desert. ► Positive AO phase enhances anitcyclonic dust transport over northwestern China. ► Positive AO phase increases southeastward dust transport over North China. ► AO-dust relation is due to changes in westerly jet and geopotential height.
작성자
Rui et al.
작성일
2024.07.09
조회수
86
2011
Pattern classification of typhoon tracks using the fuzzy c-means clustering method
Abstract: A fuzzy c-means clustering method (FCM) is applied to cluster tropical cyclone (TC) tracks. FCM is suitable for the data where cluster boundaries are ambiguous, such as a group of TC tracks. This study introduces the feasibility of a straightforward metric to incorporate the entire shapes of all tracks into the FCM, that is, the interpolation of all tracks into equal number of segments. Four validity measures (e.g., partition coefficient, partition index, separation index, and Dunn index) are used objectively to determine the optimum number of clusters. This results in seven clusters from 855 TCs over the western North Pacific (WNP) from June through October during 1965–2006. The seven clusters are characterized by 1) TCs striking the Korean Peninsula and Japan with north-oriented tracks, 2) TCs affecting Japan with long trajectories, 3) TCs hitting Taiwan and eastern China with west-oriented tracks, 4) TCs passing the east of Japan with early recurving tracks, 5) TCs traveling the easternmost region over the WNP, 6) TCs over the South China Sea, and 7) TCs moving straight across the Philippines. Each cluster shows distinctive characteristics in its lifetime, traveling distance, intensity, seasonal variation, landfall region, and distribution of TC-induced rainfall. The roles of large-scale environments (e.g., sea surface temperatures, low-level relative vorticity, and steering flows) on cluster-dependent genesis locations and tracks are also discussed.
작성자
Kim et al.
작성일
2024.07.09
조회수
91
2011
Phenology shifts at start vs. end of growing season in temperate vegetation over the N. Hem. for the period 1982–2008
Abstract: Changes in vegetative growing seasons are dominant indicators of the dynamic response of ecosystems to climate change. Therefore, knowledge of growing seasons over the past decades is essential to predict ecosystem changes. In this study, the long-term changes in the growing seasons of temperate vegetation over the Northern Hemisphere were examined by analyzing satellite-measured normalized difference vegetation index and reanalysis temperature during 1982–2008. Results showed that the length of the growing season (LOS) increased over the analysis period; however, the role of changes at the start of the growing season (SOS) and at the end of the growing season (EOS) differed depending on the time period. On a hemispheric scale, SOS advanced by 5.2 days in the early period (1982–1999) but advanced by only 0.2 days in the later period (2000–2008). EOS was delayed by 4.3 days in the early period, and it was further delayed by another 2.3 days in the later period. The difference between SOS and EOS in the later period was due to less warming during the preseason (January–April) before SOS compared with the magnitude of warming in the preseason (June–September) before EOS. At a regional scale, delayed EOS in later periods was shown. In North America, EOS was delayed by 8.1 days in the early period and delayed by another 1.3 days in the later period. In Europe, the delayed EOS by 8.2 days was more significant than the advanced SOS by 3.2 days in the later period. However, in East Asia, the overall increase in LOS during the early period was weakened in the later period. Admitting regional heterogeneity, changes in hemispheric features suggest that the longer-lasting vegetation growth in recent decades can be attributed to extended leaf senescence in autumn rather than earlier spring leaf-out. Full title: Phenology shifts at start versus end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008
작성자
Jeong et al.
작성일
2024.07.09
조회수
58
2011
첫 페이지로 이동하기
이전 페이지로 이동하기
2
3
4
5
6
7
8
9
10
11
다음 페이지로 이동하기
마지막 페이지로 이동하기