이화여자대학교
사이트맵
이화여자대학교
기후물리실험실
About Us
인사말
찾아오는 길
Research
Publications
국제학술지
국내학술지
Members
교수
박사후 연구원
학생
방문학생
전 구성원
Board
사진
공지사항
모바일메뉴 열기
이화여자대학교
기후물리실험실
About Us
인사말
찾아오는 길
Research
Publications
국제학술지
국내학술지
Members
교수
박사후 연구원
학생
방문학생
전 구성원
Board
사진
공지사항
이화여자대학교
모바일메뉴 닫기
SITEMAP
Publications
홈
Publications
About Us
Research
Publications
Members
Board
국제학술지
국제학술지
국내학술지
국제학술지
공지
(2025. 10. 28.)
현재까지 출판된 논문 목록입니다. 아직 준비 중인 논문은 포함하지 않은 점 참고 바랍니다.
게시글 검색
검색분류선택
전체
전체
제목
내용
작성자
검색어
검색
Impact of urbanization on spring and autumn phenology of deciduous trees in the Seoul Capital Area, South Korea
Abstract: Urbanization exerts anthropogenic forcing that affects regional climate and ecosystems. With increasing levels of urbanization associated with urban population growth in the near future, understanding of the impact of urbanization on terrestrial ecosystems is important for predicting future environmental changes. This study evaluates the impact of urbanization on spring and autumn phenology by addressing the relationship between population density and phenology at nine stations in the Seoul Capital Area (SCA), South Korea during 1991–2010. We analyze the spring budburst dates for the six species (Prunus mume, Forsythia koreana, Rhododendron mucronulatum, Prunus yedoensis, Prunus persica, and Prunus pyrifolia) and the leaf coloring date for the two species (Ginkgo biloba and Acer palmatum). Regardless of species, the density of the urban population shows significant negative (positive) relationships with spring (autumn) phenology. In the SCA, urban population increases are related to earlier spring budburst up to 13 days and delayed leaf coloring up to 15 days. The most apparent spring budburst sensitivity is observed in Prunus mume, whereas the most dominant autumn leaf coloring sensitivity is observed in Acer palmatum. The relationship between population density and phenology is supported by the difference in nocturnal temperatures between stations which varies with the population density. Our results suggest that, in addition to global warming, future population growth should be considered in ecosystem assessments of human-induced environmental changes.
작성자
Jeong et al.
작성일
2024.08.22
조회수
75
2018
Changes in cold surge occurrence over East Asia in the future: Role of thermal structure
Abstract: The occurrence of wintertime cold surges (CSs) over East Asia is largely controlled by the surface air temperature (SAT) distribution at high latitudes and thermal advection in the lower troposphere. The thermodynamic background state over northeastern Asia is associated with the strength of the East Asian winter monsoon and the variation of Arctic Oscillation. This study assesses the importance of the SAT structure with thermal advection in determining the frequency of CS occurrences over East Asia through the analysis of nine atmosphere–ocean coupled global climate models participating in the Coupled Model Intercomparison Project Phase 5. The historical simulations can reproduce the observed typical characteristics of CS development. On the basis of this model performance, ensemble-averaged future simulations under the representative concentration pathway 8.5 project a reduction in CS frequency by 1.1 yr-1 in the late 21st century (2065–2095) compared to the present-day period (1975–2005). The major reason for less frequent CSs in the future is the weakened cold advection, caused by notable SAT warming over the northern part of East Asia. These results suggest that changes in the meridional SAT structure and the associated changes in thermal advection would play a more substantial role than local warming in determining future changes in the frequency of CS occurrences over East Asia.
작성자
Heo et al.
작성일
2024.08.22
조회수
84
2018
Near-future prediction of tropical cyclone activity over the North Atlantic
Abstract: Prediction of tropical cyclone (TC) activity is essential to better prepare for and mitigate TC-induced disasters. Although many studies have attempted to predict TC activity on various time scales, very few have focused on near-future predictions. Here a decrease in seasonal TC activity over the North Atlantic (NA) for 2016–30 is shown using a track-pattern-based TC prediction model. The TC model is forced by long-term coupled simulations initialized using reanalysis data. Unfavorable conditions for TC development including strengthened vertical wind shear, enhanced low-level anticyclonic flow, and cooled sea surface temperature (SST) over the tropical NA are found in the simulations. Most of the environmental changes are attributable to cooling of the NA basinwide SST (NASST) and more frequent El Niño episodes in the near future. The consistent NASST warming trend in the projections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests that natural variability is more dominant than anthropogenic forcing over the NA in the near-future period.
작성자
Choi et al.
작성일
2024.08.22
조회수
73
2017
Multiday evolution of convective bursts during WNP TC development and nondevelopment using geostationary satellite...
Abstract: Tropical cyclones (TCs) develop through latent heating from a series of deep convection. To investigate the evolution of diurnal convective burst (CB) activities prior to TC formation, we analyzed 463 tropical disturbances that developed (80) or not developed (383) into TCs over the western North Pacific during the 2007–2009 period. Geostationary satellite data allowed defining deep convection where infrared (IR) brightness temperature is lower than that of water vapor (WV). Diurnal expansions from time series of IR minus WV < 0 areas near disturbance vortex centers for 5 days are defined as CB events. Combined analysis with the Modern Era Retrospective-Analysis shows that the multiday convective-environmental evolution for TC formation is entirely different from nonformation processes in terms of the occurrence of two consecutive diurnal CB events. Multiday CBs (mCB) are observed in 67.5% of the 80 TC formation cases and in 13.8% of the 383 nonformation cases. Intensities of the middle-to-low tropospheric relative vorticity of these two groups are comparable on 4 to 5 days prior to TC formation. However, vorticity intensification is weak for nondeveloping disturbances in environments of strong vertical wind shear; these disturbances eventually decay. The vorticity of developing disturbances continuously intensifies to TC strengths. The remaining 32.5% of the TC cases without mCB show weaker initial vorticity, but rapid intensification over 3 day periods before TC formation. The present results reveal that mCB is a common feature in pre-TC stages, and large-scale environments of weak vertical wind shear are critical for the formation of TC-strength circulations. Full title: Multiday evolution of convective bursts during western North Pacific tropical cyclone development and nondevelopment using geostationary satellite measurements
작성자
Chang et al.
작성일
2024.08.22
조회수
60
2017
Dominance of climate warming effects on recent drying trends over wet monsoon regions
Abstract: Understanding changes in background dryness over land is key information for adapting to climate change because of its critical socioeconomic consequences. However, causes of continental dryness changes remain uncertain because various climate parameters control dryness. Here, we verify dominant climate variables determining dryness trends over continental eastern Asia, which is characterized by diverse hydroclimate regimes ranging from arid to humid, by quantifying the relative effects of changes in precipitation, solar radiation, wind speed, surface air temperature, and relative humidity on trends in the aridity index based on observed data from 189 weather stations for the period of 1961–2010. Before the early 1980s (1961–1983), change in precipitation is a primary condition for determining aridity trends. In the later period (1984–2010), the dominant climate parameter for aridity trends varies according to the hydroclimate regime. Drying trends in arid regions are mostly explained by reduced precipitation. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon region despite an enhanced water supply and relatively less warming. Our results show significant drying effects of warming over the humid monsoon region in recent decades; this also supports the drying trends over warm and water-sufficient regions in future climate.
작성자
Park et al.
작성일
2024.08.22
조회수
81
2017
Climatic influence on corn sowing date in the Midwestern United States
ABSTRACT: This study investigated the climatic influence on the corn sowing date in the Midwestern United States by comparing the survey data of corn cultivation with meteorological records in nine states for the last 36 years (1979–2014). The results show that the year-to-year changes in the sowing date were significantly affected by springtime air temperature and precipitation in the nine states, although large state-to-state differences were found in the degree of sowing date–meteorology relationship. We determined that the 36-year climatological warm period (CWP) with daily mean temperatures ≥10 °C plays an important role in the state-to-state differences. For the states with longer CWPs, the influence of air temperature (precipitation) was generally weaker (stronger). This observed counteractive relationship should be considered for crop modelling for more effective assessment of the impact of climate change on agriculture.
작성자
Choi et al.
작성일
2024.08.22
조회수
62
2017
An improved parameterization of the allocation of assimilated carbon to plant parts in vegetation dynamics for Noah-MP
Abstract: In the land surface models predicting vegetation growth and decay, representation of the seasonality of land surface energy and mass fluxes largely depends on how to describe the vegetation dynamics. In this study, we developed a new parameterization scheme to characterize allocation of the assimilated carbon to plant parts, including leaves and fine roots. The amount of carbon allocation in this scheme depends on the climatological net primary production (NPP) of the plants. The newly developed scheme is implemented in the augmented Noah land surface model with multiple parameterization options (Noah-MP) along with other biophysical processes related to variations in photosynthetic capacity. The scheme and the augmented biophysical processes are evaluated against tower measurements of vegetation from four forest sites in various regions—two for the deciduous broadleaf and two for the needleleaf evergreen forest. Results from the augmented Noah-MP showed good agreement with the observations and demonstrated improvements in representing the seasonality of leaf area index (LAI), gross primary production (GPP), ecosystem respiration (ER), and latent heat flux. In particular, significant improvements are found in simulating amplitudes and phase shift timing in the LAI seasonal cycle, and the amount of GPP and ER in the growing season. Furthermore, the augmented Noah-MP performed reasonably well in simulating the spatial distributions of LAI, GPP, and NPP in East Asia, consistent with the satellite observations.
작성자
Gim et al.
작성일
2024.08.22
조회수
81
2017
Seasonal forecasting of intense tropical cyclones over the North Atlantic and the western North Pacific basins
Intense tropical cyclones (TCs) accompanying torrential rain and powerful wind gusts often cause substantial socio-economic losses in the regions around their landfall. This study analyzes intense TCs in the North Atlantic (NA) and the western North Pacific (WNP) basins during the period 1982–2013. Different intensity criteria are used to define intense TCs for these two basins, category 1 and above for NA and category 3 and above for WNP, because the number of TCs in the NA basin is much smaller than that in the WNP basin. Using a fuzzy clustering method, intense TC tracks in the NA and the WNP basins are classified into two and three representative patterns, respectively. On the basis of the clustering results, a track-pattern-based model is then developed for forecasting the seasonal activities of intense TCs in the two basins. Cross-validation of the model skill for 1982–2013 as well as verification of a forecast for the 2014 TC season suggest that our intense TC model is applicable to operational uses.
작성자
Choi et al.
작성일
2024.08.28
조회수
64
2016
Highlighting socioeconomic damages caused by weakened tropical cyclones in the Republic of Korea
To alleviate enormous socioeconomic damages by tropical cyclones (TCs), the Korea Meteorological Administration (KMA) retains a special warning system for strong TCs (STCs, maximum wind speed of the best-track data ≥17 m s−1), but not for relatively weak TCs (WTCs) which are not regarded as threatening as STCs; the warning system encompasses complex extreme phenomena such as gust, downpour, storm surge, and wind wave possibly arising from STCs. However, it is necessary to examine if WTCs can be actually as harmful as STCs with various extreme phenomena. Here, we compare the risks and intensities of WTCs with those of STCs for each province by analyzing the national damage reports and the near-surface wind and rainfall records from 60 weather stations in the Republic of Korea. According to our result, WTCs bring huge damages comparable to STCs in the northwestern Korea, the most populated and the richest area in the country, while WTCs cause much less destruction than STCs in the southeast. The large damages in the northwestern Korea can be explained by different mean landfall locations between WTCs and STCs; the storm centers of WTCs make landfall closer to the northwestern coastline than STCs’. Significant correlations between wind/rainfall and the damage amount by WTCs suggest that WTCs can also induce multiple extreme phenomena like STCs. Thus, the KMA needs to develop a special warning system for WTCs like for STCs.
작성자
Park et al.
작성일
2024.08.28
조회수
85
2016
Evaluating the predictability of PM10 grades in Seoul, Korea using a neural network model based on synoptic patterns
As of November 2014, the Korean Ministry of Environment (KME) has been forecasting the concentration of particulate matter with diameters ≤ 10 μm (PM10) classified into four grades: low (PM10 ≤ 30 μg m−3), moderate (30 150 μg m−3). The KME operational center generates PM10 forecasts using statistical and chemistry-transport models, but the overall performance and the hit rate for the four PM10 grades has not previously been evaluated. To provide a statistical reference for the current air quality forecasting system, we have developed a neural network model based on the synoptic patterns of several meteorological fields such as geopotential height, air temperature, relative humidity, and wind. Hindcast of the four PM10 grades in Seoul, Korea was performed for the cold seasons (October–March) of 2001–2014 when the high and very high PM10 grades are frequently observed. Because synoptic patterns of the meteorological fields are distinctive for each PM10 grade, these fields were adopted and quantified as predictors in the form of cosine similarities to train the neural network model. Using these predictors in conjunction with the PM10 concentration in Seoul from the day before prediction as an additional predictor, an overall hit rate of 69% was achieved; the hit rates for the low, moderate, high, and very high PM10 grades were 33%, 83%, 45%, and 33%, respectively. Our findings also suggest that the synoptic patterns of meteorological variables are reliable predictors for the identification of the favorable conditions for each PM10 grade, as well as for the transboundary transport of PM10 from China. This evaluation of PM10 predictability can be reliably used as a statistical reference and further, complement to the current air quality forecasting system.
작성자
Hur et al.
작성일
2024.08.28
조회수
59
2016
Does El Niño-Southern Oscillation affect the precipitation in Korea on seasonal time scales?
A number of studies in the past two decades have attempted to find the relationship between the precipitation in Korea and the El Niño-Southern Oscillation (ENSO) on various time scales. Comprehensive analyses of station precipitation data in Korea for the 61-year period, 1954-2014, in this study show that the effects of ENSO on the seasonal precipitation in Korea are practically negligible. The correlation between summer precipitation and ENSO is insignificant regardless of the intensity, type (e.g., eastern-Pacific or central-Pacific), and stage (e.g., developing, mature, or decaying) of ENSO. Somewhat meaningful correlation between ENSO and precipitation in Korea occurs only in the ENSO-developing fall. Because summer rainfall accounts for over half of the annual total and fall is a dry season in Korea, the overall effects of ENSO on precipitation in Korea are practically nonexistent.
작성자
Ho et al.
작성일
2024.08.28
조회수
59
2016
A track pattern–based seasonal prediction of tropical cyclone activity over the North Atlantic
A seasonal prediction model of tropical cyclone (TC) activities for the period August-October over the North Atlantic (NA) has been developed on the basis of TC track patterns. Using the fuzzy c-means method, a total of 432 TCs in the period 1965-2012 are categorized into the following four groups: 1) TCs off the East Coast of the United States, 2) TCs over the Gulf of Mexico, 3) TCs that recurve into the open oceans of the central NA, and 4) TCs that move westward in the southern NA. The model is applied to predict the four TC groups separately in conjunction with global climate forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2). By adding the distributions of the four TC tracks with pre-calculated weighting factors, this seasonal TC forecast model provides the spatial distribution of TC activities over the entire NA basin. Multiple forecasts initialized in six consecutive months from February to July are generated at monthly intervals to examine the applicability of this model in operational TC forecasting. Cross-validations of individual forecasts show that the model can reasonably predict the observed TC frequencies over NA at the 99% confidence level. The model shows a stable spatial prediction skill, proving its advantage for forecasting regional TC activities several months in advance. In particular, the model can generate reliable information on regional TC counts in the near-coastal regions as well as in entire NA basin.
작성자
Choi et al.
작성일
2024.08.28
조회수
53
2016
Airborne measurements of high pollutant concentration events in the free troposphere over the West Coast
Aircrafts enable the direct measurement of chemical components in the free troposphere (FT). This study employed airborne measurements to examine the occurrences of high concentrations of SO2 and NOx in the FT over the coastal region west of the Seoul metropolitan area, South Korea. The data from a long-term (1997-2011) airborne measurement campaign were used to determine the meteorological conditions favorable for carrying these pollutants into the Seoul area. The back trajectory analyses of 21 instances of high FT pollutant concentration events showed ascending patterns from the major pollutant sources, mainly the industrial complexes in eastern China, in 9 instances and passing patterns in 12 instances. In the ascending instances, developing low-pressure systems over the source regions provide favorable conditions to uplift air pollutants from the surface into the FT. In the passing instances, an anomalous low-pressure system near the surface prevented airflows from descending into the boundary layer and upper-level anticyclonic systems helped to keep the ascending airflows in the FT. This study proposes the basic mechanisms for predicting air quality in the Seoul area, considering that air pollutants in the FT often entrain into the boundary layer to increase local concentrations.
작성자
Lee et al.
작성일
2024.08.28
조회수
57
2016
Spatial and temporal changes in leaf coloring date of Acer palmatum and Ginkgo biloba in response to temperature...
Abstract: Understanding shifts in autumn phenology associated with climate changes is critical for preserving forest ecosystems. This study examines the changes in the leaf coloring date (LCD) of two temperate deciduous tree species, Acer palmatum (Acer) and Ginkgo biloba (Ginkgo), in response to surface air temperature (Ts) changes at 54 stations of South Korea for the period 1989–2007. The variations of Acer and Ginkgo in South Korea are very similar: they show the same mean LCD of 295th day of the year and delays of about 0.45 days year-1 during the observation period. The delaying trend is closely correlated (correlation coefficient > 0.77) with increases in Ts in mid-autumn by 2.8 days °C-1. It is noted that the LCD delaying and temperature sensitivity (days °C-1) for both tree species show negligible dependences on latitudes and elevations. Given the significant LCD-Ts relation, we project LCD changes for 2016–35 and 2046–65 using a process-based model forced by temperature from climate model simulation. The projections indicate that the mean LCD would be further delayed by 3.2 (3.7) days in 2016–35 (2046–65) due to mid-autumn Ts increases. This study suggests that the mid-autumn warming is largely responsible for the observed LCD changes in South Korea and will intensify the delaying trends in the future. Full title: Spatial and temporal changes in leaf coloring date of Acer palmatum and Ginkgo biloba in response to temperature increases in South Korea
작성자
Park et al.
작성일
2024.08.22
조회수
76
2017
Tropical Cyclone Mekkhala's (2008) Formation over the South China Sea: Mesoscale, Synoptic-scale and Large-scale...
Tropical cyclone formation close to the coastline of the Asian continent presents a significant threat to heavily populated coastal countries. A case study of Tropical Storm Mekkhala (2008) that developed off the coast of Vietnam is presented using the high-resolution analyses of the European Centre for Medium-Range Weather Forecasts/Year of Tropical Convection and multiple satellite observations. The authors have analyzed contributions to the formation from large-scale intraseasonal variability, synoptic perturbations, and mesoscale convective systems (MCSs). Within a large-scale westerly wind burst (WWB) associated with the Madden–Julian oscillation (MJO), synoptic perturbations generated by two preceding tropical cyclones initiated the pre-Mekkhala low-level vortex over the Philippine Sea. Typhoon Hagupit produced a synoptic-scale wave train that contributed to the development of Jangmi, but likely suppressed the Mekkhala formation. The low-level vortex of the pre-Mekkhala disturbance was then initiated in a confluent zone between northeasterlies in advance of Typhoon Jangmi and the WWB. A key contribution to the development of Mekkhala was from diurnally varying MCSs that were invigorated in the WWB. The oceanic MCSs, which typically develop off the west coast of the Philippines in the morning and dissipate in the afternoon, were prolonged beyond the regular diurnal cycle. A combination with the MCSs developing downstream of the Philippines led to the critical structure change of the oceanic convective cluster, which implies the critical role of mesoscale processes. Therefore, the diurnally varying mesoscale convective processes over both the ocean and land are shown to have an essential role in the formation of Mekkhala in conjunction with large-scale MJO and the synoptic-scale TC influences.
작성자
Park et al.
작성일
2024.08.28
조회수
78
2015
The effects of ENSO under negative AO phase on spring dust activity over northern China: An observational investigation
The effects of El Niño/Southern Oscillation (ENSO) under negative Arctic Oscillation (AO) phase on the Asian dust activity are investigated for springs of the period 1961–2002. The spring dust index (DI) describing the monthly frequencies of three types of dust events (e.g. dust storm, blowing dust, and floating dust) exhibits a significant increase in the years of negative AO phase (hereafter AO−) and El Niño, compared with that in the years of AO− and La Niña. Averaged over all observation stations, the spring DI (49.7) during the El Niño/AO− years is higher by 11.4% or 29.8% than that (38.3) during the La Niña/AO− years. We suggest possible physical mechanism that the anomalous large-scale environments associated with AO− and El Niño are more effective to provide favourable conditions to enhance Asian dust activity. During the El Niño/AO− years, meridional gradients of pressure and temperature over the dust source regions are significantly enhanced by decreasing the geopotential height and warming air temperature that originated from the north and south of source regions, respectively, under the influence of AO− and El Niño. These also intensify the zonal wind shear and atmospheric baroclinicity, thereby producing enhanced cyclogenesis and dust occurrences over the major source regions. At the same time, dust transport paths with the stronger westerly winds are developed by the combined constraints of anomalous cyclone over the Siberia and the Mongolia and anomalous anticyclone over the western North Pacific, and thus strengthen dust transport to the downwind regions.
작성자
Lee et al.
작성일
2024.08.28
조회수
91
2015
Retrieval of outgoing longwave radiation from COMS narrowband infrared imagery
Hourly outgoing longwave radiation (OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite (COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm (OLR12.0 using the 12.0 μm channel) and three multiple-channel algorithms (OLR10.8+12.0 using the 10.8 and 12.0 μm channels; OLR6.7+10.8 using the 6.7 and 10.8 μm channels; and OLRAll using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth’s Radiant Energy System (CERES) over the full COMS field of view [roughly (50°S–50°N, 70°–170°E)] during April 2011. Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m−2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8 and OLRAll have much smaller errors (∼6 W m−2) than OLR12.0 and OLR10.8+12.0 (∼8 W m−2). Moreover, the small errors of OLR6.7+10.8 and OLRAll are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the 6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.
작성자
Park et al.
작성일
2024.08.28
조회수
69
2015
Regional variations in potential plant habitat changes in response to multiple global warming scenarios
This study examines the impacts of global warming on the timing of plant habitat changes in the twenty-first century using climate scenarios from multiple global climate models (GCMs). The plant habitat changes are predicted by driving the bioclimate rule in a dynamic global vegetation model using the climate projections from 16 coupled GCMs. The timing of plant habitat changes is estimated by the first occurrence of specified fractional changes (10%, 20%, and 30%). All future projections are categorized into three groups by the magnitude of the projected global-mean land surface temperature changes: low (3.5 K) warming. During the course of the twenty-first century, dominant plant habitat changes are projected in ecologically transitional (i.e., from tropical to temperate and temperate to boreal) regions. The timing of plant habitat changes varies substantially according to regions. In the low-warming group, habitat changes of 10% in southern Africa occur in 2028, earlier than in the Americas by more than 70 yr. Differences in the timing between regions increase with the increase in warming and fractional threshold. In the subtropics, fast plant habitat changes are projected for the Asia and Africa regions, where countries of relatively small gross domestic product (GDP) per capita are concentrated. Ecosystems in these regions will be more vulnerable to global warming, because countries of low economic power lack the capability to deal with the warming-induced habitat changes. Thus, it is important to establish international collaboration via which developed countries provide assistance to mitigate the impacts of global warming.
작성자
Park et al.
작성일
2024.08.28
조회수
73
2015
Quiescence of Asian dust events in South Korea and Japan during 2012 spring: Dust outbreaks and transports
This study examined the quiescence of Asian dust events in South Korea and Japan during the spring of 2012, presenting a synoptic characterization and suggesting possible causes. Synoptic observation reports from the two countries confirmed that spring 2012 had the lowest number of dust events in 2000–2012. The monthly dust frequency (DF) in March 2012 over the dust source regions, i.e., deserts in northern China and Mongolia, indicated a significant decrease compared to the 12 year (2000–2011) March climatology. The DF in April 2012 was comparable to the 12 year climatology values, but in May 2012 it was slightly lower. The daily Ozone Monitoring Instrument Aerosol Index and the Navy Aerosol Analysis and Prediction System simulations revealed stagnant dust movement in March and May 2012. Anomalous anticyclones north of the source regions decreased the dust outbreaks and enhanced the southeasterly winds, resulting in few dust events over the downwind countries (i.e., South Korea and Japan). By contrast, in April 2012, a strong anomalous cyclone east of Lake Baikal slightly increased the dust outbreaks over northeastern China. However, the major dust outbreaks were not transported downwind because of exceptional dust pathways, i.e., the southeastward pathway of dust transport was unusually blocked by the expansion of an anomalous anticyclonic circulation over the Sea of Okhotsk, with dust being transported northeast.
작성자
Lee et al.
작성일
2024.08.28
조회수
60
2015
Projection of summertime ozone concentration over East Asia under multiple IPCC SRES emission scenarios
We have developed the Integrated Climate and Air Quality Modeling System (ICAMS) through the one-way nesting of global–regional models to examine the changes in the surface ozone concentrations over East Asia under future climate scenarios. Model simulations have been conducted for the present period of 1996–2005 to evaluate the performance of ICAMS. The simulated surface ozone concentrations reproduced the observed monthly mean concentrations at sites in East Asia with high R2 values (0.4–0.9), indicating a successful simulation to capture both spatial and temporal variability. We then performed several model simulations with the six IPCC SRES scenarios (A2, A1B, A1FI, A1T, B1, and B2) for the next three periods, 2016–2025 (the 2020s), 2046–2055 (the 2050s), and 2091–2100 (the 2090s). The model results show that the projected changes of the annual daily mean maximum eight-hour (DM8H) surface ozone concentrations in summertime for East Asia are in the range of 2–8 ppb, −3 to 8 ppb, and −7 to 9 ppb for the 2020s, the 2050s, and the 2090s, respectively, and are primarily determined based on the emission changes of NOx and NMVOC. The maximum increases in the annual DM8H surface ozone and high-ozone events occur in the 2020s for all scenarios except for A2, implying that the air quality over East Asia is likely to get worse in the near future period (the 2020s) than in the far future periods (the 2050s and the 2090s). The changes in the future environment based on IPCC SRES scenarios would also influence the change in the occurrences of high-concentrations events more greatly than that of the annual DM8H surface ozone concentrations. Sensitivity simulations show that the emissions increase is the key factor in determining future regional surface ozone concentrations in the case of a developing country, China, whereas a developed country, Japan would be influenced more greatly by effects of the regional climate change than the increase in emissions.
작성자
Lee et al.
작성일
2024.08.28
조회수
63
2015
첫 페이지로 이동하기
이전 페이지로 이동하기
1
2
3
4
5
6
7
8
9
10
다음 페이지로 이동하기
마지막 페이지로 이동하기