이화여자대학교
사이트맵
이화여자대학교
기후물리실험실
About Us
인사말
찾아오는 길
Research
Publications
국제학술지
국내학술지
Members
교수
박사후 연구원
학생
방문학생
졸업생
Board
사진
공지사항
모바일메뉴 열기
이화여자대학교
기후물리실험실
About Us
인사말
찾아오는 길
Research
Publications
국제학술지
국내학술지
Members
교수
박사후 연구원
학생
방문학생
졸업생
Board
사진
공지사항
이화여자대학교
모바일메뉴 닫기
SITEMAP
Publications
홈
Publications
About Us
Research
Publications
Members
Board
국제학술지
국제학술지
국내학술지
국제학술지
공지
(2024. 9. 4.)
현재까지 출판된 논문 목록입니다. 아직 준비 중인 논문은 포함하지 않은 점 참고 바랍니다.
게시글 검색
검색분류선택
전체
전체
제목
내용
작성자
검색어
검색
Evidence of reduced vulnerability against tropical cyclones in the Republic of Korea
On average, three tropical cyclones (TCs) affect the Republic of Korea each year, causing extensive damage. To alleviate the TC-induced disasters, the Korean government has invested nearly 4% of its annual budget in recent decades in prevention efforts; however, the effectiveness of this costly program has not been evaluated. This study determined whether any evidence shows a reduced vulnerability to TCs in Korea over 1979–2010 by utilizing multi-linear regression. Homelessness, casualties, and property losses were individually examined. These explained variables were normalized into the socio-economic circumstances of 2005 before the regression to eliminate the effect of changing exposure by dealing with population and wealth at provincial levels. Three potential explanatory variables based on nationwide weather-station data were considered, including the maximum wind, maximum rainfall, and number of affected stations over each TC's damaging period. In addition, the annual per capita income, showing a quasi-linear increasing tendency, was used as an additional explanatory variable to examine how vulnerability is altered. The results revealed that each empirical model of homelessness, casualties, and property losses can account for 47%, 57%, and 57% of each variance, respectively, which is highest when considering all four explanatory variables. Consistently negative coefficients of the per capita income terms for all damage types suggest that the vulnerability to TCs has been significantly reduced. This finding appears to be partly the result of the national prevention effort, although it also can be attributed to other unintended adaptation factors, such as building codes, industrial structures, and land use.
작성자
Park et al.
작성일
2024.08.28
조회수
12
2015
Earth and environmental remote sensing community in South Korea: A review
This paper is a review of the satellite remote sensing community in South Korea, in the field of Earth and environmental sciences. The community has been invigorated by the Communication, Ocean, and Meteorological Satellite (COMS), the first Korean geostationary satellite project. Since its successful launch on July 26, 2010, about 300 organizations have officially received remotely sensed COMS data. This paper describes how satellite remote sensing has been used for decision-making in Korea, and the evolution of the associated education system. Despite the rapid development of remote sensing, Korea is facing shortcomings in the applicability of remote sensing to industry and society. The two future geostationary satellites planned by the Korean Government, GK (Geo-KOMPSAT)-2A and GK-2B, for monitoring climate and the environment in East Asia from 2018/2019 will alleviate these shortcomings.
작성자
Choi and Ho
작성일
2024.08.28
조회수
11
2015
Climatological features of WRF-simulated tropical cyclones over the western North Pacific
Tropical cyclones (TCs) over the western North Pacific (WNP) are simulated for the 29 TC seasons of July–October from 1982 to 2010 using the regional Weather Research and Forecasting (WRF) model nested within global WRF model simulations. Averaged over the entire 29-year period, the nested global–regional WRF has reasonably simulated the climatology of key TC features such as the location/frequency of genesis and tracks. The dynamical and thermal structures of the simulated TCs are weaker than observations owing to the coarse spatial resolution of the regional WRF (50 km × 50 km). TC frequencies are somewhat underestimated over the East China Sea but are substantially overestimated over the South China Sea and the Philippine Sea with neighboring oceans between 10°N and 15°N. Categorization of the simulated TCs into six clusters based on the observed TC clusters and the associated large-scale circulation show that the nested simulation depicts the observed TC characteristics well except for two clusters associated with TCs traveling from the Philippine Sea to the East China Sea. Errors in the simulated TC genesis and tracks are mostly related to these two clusters. In the simulation, the monsoon confluent zone over the Philippine Sea is too strong, and the mid-latitude jet stream expands farther south than that in the observations. Overall results from this study suggest that the nested global–regional WRF can be useful for studying the TC climatology over the WNP.
작성자
Kim et al.
작성일
2024.08.28
조회수
9
2015
A new dynamical index for classification of cold surge types over East Asia
The cold surges over East Asia can be classified into wave-train type and blocking type according to their dynamic origins. In the present study, two dynamic indices are proposed to objectively identify cold surge types using potential temperature (θ) on the dynamic tropopause at 2-potential vorticity units (2-PVU) surface. The two indices are designed to represent primary characteristics of the two types of cold surge. The wave-train index (WI) is defined as a difference of anomalous θ on the 2-PVU surface between the western North Pacific and northeast China, which captures a southward (northward) intrusion of cold (warm) air mass related to the trough-ridge pattern. The blocking index (BI) is defined as a difference of anomalous θ between the subarctic region and northeast China, which indicates air mass overturning related to a reversal of the usual meridional θ gradient commonly observed in the occurrence of blocking type cold surge. Composite analyses based on the distribution of the WI and BI clearly demonstrate the dynamic evolutions of corresponding cold surge types. The wave-train cold surge is associated with a southeastward expansion of the Siberian High and northerly wind near surface, which is caused by growing baroclinic waves. During the blocking cold surge, a geopotential height dipole indicating the subarctic blocking and deepening of East Asian coastal trough induces a southward expansion of the Siberian High and northeasterly wind. Compared to the wave-train type, the blocking cold surge exhibits a longer duration and stronger intensity. In the new framework of these dynamic indices, we can detect a third type of cold surge when both the wave-train and the blocking occur together. In addition, we can exclude the events that do not have the essential features of the upper tropospheric disturbances or the subarctic anticyclonic circulation, which are responsible for cold surge occurrence, using the new indices.
작성자
Park et al.
작성일
2024.08.28
조회수
7
2015
Sensitivity of Arctic warming to sea surface temperature distribution over sea-ice melted region in AGCM experiments
Substantial reduction in Arctic sea ice in recent decades has intensified air-sea interaction over the Arctic Ocean and has altered atmospheric states in the Arctic and surrounding high-latitude regions. This study has found that the atmospheric responses related to Arctic sea-ice melt in the cold season (October–March) depend on sea-ice fraction and are very sensitive to in situ sea surface temperature (SST) from a series of atmospheric general circulation model (AGCM) simulations in which multiple combinations of SSTs and sea-ice concentrations are prescribed in the Arctic Ocean. It has been found that the amplitude of surface warming over the melted sea-ice region is controlled by concurrent in situ SST even if these simulations are forced by the same sea-ice concentration. Much of the sensitivity of surface warming to in situ SST are related with large changes in surface heat fluxes such as the outgoing long-wave flux in early winter (October–December) and the sensible and latent heat fluxes for the entire cold season. Vertical extension of surface warming and moistening is sensitive to these changes as well; the associated condensational heating modulates a static stability in the lower troposphere. This study also indicates that changes in SST fields in AGCM simulations must be implemented with extra care, especially in the melted sea-ice region in the Arctic. The statistical method introduced in this study for adjusting SSTs in conjunction with a given sea-ice change can help to model the atmospheric response to sea-ice loss more accurately.
작성자
Jun et al.
작성일
2024.08.28
조회수
8
2014
Projected climate regimes shift under future global warming from 4 multi-model, multi-scenarios CMIP5 simulations
This study examined shifts in climate regimes over the global land area using the Köppen–Trewartha (K–T) climate classification by analyzing observations during 1900–2010, and simulations during 1900–2100 from twenty global climate models participating in Phase 5 of the Coupled Model Inter-comparison Project (CMIP5). Under the Intergovernmental Panel on Climate Change Representative Concentration Pathways 8.5 (RCP8.5) scenario, the models projected a 3°–10 °C warming in annual temperature over the global land area by the end of the twenty-first century, with strong (moderate) warming in the high (middle) latitudes of the Northern Hemisphere and weaker warming in the tropics and the Southern Hemisphere. The projected changes in precipitation vary considerably in space and present greater uncertainties among the models. Overall, the models are consistent in projecting increasing precipitation over the high-latitude of the Northern Hemisphere, and reduced precipitation in the Mediterranean, southwestern North America, northern and southern Africa and Australia. Based on the projected changes in temperature and precipitation, the K–T climate types would shift toward warmer and drier climate types from the current climate distribution. Regions of temperate, tropical and dry climate types are projected to expand, while regions of polar, sub-polar and subtropical climate types are projected to contract. The magnitudes of the projected changes are stronger in the RCP8.5 scenario than the low emission scenario RCP4.5. On average, the climate types in 31.4% and 46.3% of the global land area are projected to change by the end of the twenty-first century under RCP4.5 and RCP8.5 scenarios, respectively. Further analysis suggests that changes in precipitation played a slightly more important role in causing shifts of climate type during the twentieth century. However, the projected changes in temperature play an increasingly important role and dominate shifts in climate type when the warming becomes more pronounced in the twenty-first century.
작성자
Feng et al.
작성일
2024.08.28
조회수
9
2014
Influence of non-feedback variations of radiation on the determination of climate feedback
Recent studies have estimated the magnitude of climate feedback based on the correlation between time variations in outgoing radiation flux and sea surface temperature (SST). This study investigates the influence of the natural non-feedback variation (noise) of the flux occurring independently of SST on the determination of climate feedback. The observed global monthly radiation flux is used from the Clouds and the Earth's Radiant Energy System (CERES) for the period 2000–2008. In the observations, the time lag correlation of radiation and SST shows a distorted curve with low statistical significance for shortwave radiation while a significant maximum at zero lag for longwave radiation over the tropics. This observational feature is explained by simulations with an idealized energy balance model where we see that the non-feedback variation plays the most significant role in distorting the curve in the lagged correlation graph, thus obscuring the exact value of climate feedback. We also demonstrate that the climate feedback from the tropical longwave radiation in the CERES data is not significantly affected by the noise. We further estimate the standard deviation of radiative forcings (mainly from the noise) relative to that of the non-radiative forcings, i.e., the noise level from the observations and atmosphere–ocean coupled climate model simulations in the framework of the simple model. The estimated noise levels in both CERES (>13 %) and climate models (11–28 %) are found to be far above the critical level (~5 %) that begins to misrepresent climate feedback.
작성자
Choi et al.
작성일
2024.08.28
조회수
11
2014
Influence of cloud phase composition on climate feedbacks
The ratio of liquid water to ice in a cloud, largely controlled by the presence of ice nuclei and cloud temperature, alters cloud radiative effects. This study quantitatively examines how the liquid fraction of clouds influences various climate feedbacks using the NCAR Community Atmosphere Model (CAM). Climate feedback parameters were calculated using equilibrated temperature changes in response to increases in the atmospheric concentration of carbon dioxide in CAM Version 3.0 with a slab ocean model. Two sets of model experiments are designed such that cloud liquid fraction linearly decreases with a decrease in temperature down to −20°C (Experiment “C20”) and −40°C (Experiment “C40”). Thus, at the same subzero temperature, C20 yields fewer liquid droplets (and more ice crystals) than C40. Comparison of the results of experiments C20 and C40 reveals that experiment C20 is characterized by stronger cloud and temperature feedbacks in the tropics (30°N–30°S) (by 0.25 and −0.28 W m−2 K−1, respectively) but weaker cloud, temperature, and albedo feedbacks (by −0.20, 0.11, and −0.07 W m−2 K−1) in the extratropics. Compensation of these climate feedback changes leads to a net climate feedback change of ~7.28% of that of C40 in the model. These results suggest that adjustment of the cloud phase function affects all types of feedbacks (with the smallest effect on water vapor feedback). Although the net change in total climate feedback is small due to the cancellation of positive and negative individual feedback changes, some of the individual changes are relatively large. This illustrates the importance of the influence of cloud phase partitioning for all major climate feedbacks, and by extension, for future climate change predictions.
작성자
Choi et al.
작성일
2024.08.28
조회수
8
2014
Growing threat of intense tropical cyclones to East Asia during the period 1977–2010
The threat of intense tropical cyclones (TCs) to East Asia has increased in recent decades. Integrated analyses of five available TC data sets for the period 1977–2010 revealed that the growing threat of TCs primarily results from the significant shift that the spatial positions of the maximum intensity of TCs moved closer to East Asian coastlines from Vietnam to Japan. This shift incurs a robust increase in landfall intensity over east China, Korea and Japan. In contrast, an increase of TC genesis frequency over the northern part of the South China Sea leads to a reduction in the maximum TC intensity before landfall, because of their short lifetime; thus, there are no clear tendencies in the landfall intensity across Vietnam, south China and Taiwan. All changes are related to the strengthening of the Pacific Walker circulation, closely linked with the recent manifestation that the warming trend of sea surface temperature in the tropical western Pacific is much higher than that in the central to eastern Pacific.
작성자
Park et al.
작성일
2024.08.28
조회수
9
2014
Effects of double cropping on summer climate of the North China Plain and neighbouring regions
The North China Plain (NCP) is one of the most important agricultural regions in Asia and produces up to 50% of the cereal consumed in China each year. To meet increasing food demands without expanding croplands, annual agricultural practice in much of the NCP has changed from single to double cropping. The impact of double cropping on the regional climate, through biophysical feedbacks caused by changes in land surface conditions, remains largely unknown. Here we show that observed surface air temperatures during the inter-cropping season (June and July) are 0.40 °C higher over double cropping regions (DCRs) than over single cropping regions (SCRs), with increases in the daily maximum temperature as large as 1.02 °C. Using regional climate modelling, we attribute the higher temperatures in DCRs to reduced evapotranspiration during the inter-cropping period. The higher surface temperatures in June and July affect low-level circulation and, in turn, rainfall associated with the East Asian monsoon over the NCP and neighbouring countries. These findings suggest that double cropping in the NCP can amplify the magnitude of summertime climate changes over East Asia.
작성자
Jeong et al.
작성일
2024.08.28
조회수
17
2014
첫 페이지로 이동하기
이전 페이지로 이동하기
4
5
6
7
8
9
10
11
12
13
다음 페이지로 이동하기
마지막 페이지로 이동하기